平成6年度 農林水産省補助事業 利 用 技 術 推 進 事 業

間伐材等小径材利用住宅工法開発事業報告書

平成7年3月

財団法人 日本住宅・木材技術センター

·•.			

まえがき

ひき板を積層接着して製造する構造用集成材は、品質性能のばらつきが少ないことから、近年その評価が高まっている。構造用集成材は、JAS規格でひき板の積層数が4以上のものとされているが、そのニーズが高まる中で、積層数が2ないし3であるものも利用できるようJAS規格等公的規格を制定してほしいとする要請が高まっている。

他方、2ないし3層の構造用集成材は、間伐材等小径木の利用拡大を図る上で有望な製品であり、この面からもこの利用を促進し得るよう公的規格の制定が望まれるところである。

本事業は、間伐等小径木の利用拡大を図る観点から、スギ等を原料とする2及び3層の構造用集成材を試作して、その強度特性等の面での所要の資料を調整し、これをJAS規格等公的規格の制定に向けた検討と3層集成材の安定的な生産の促進に資することを目的とするものである。

本年度は、天竜スギ、信州カラマツ、ソ連カラマツの3層集成材の製造と曲げ強度試験を実施し、その結果を取りまとめた。

事業の実施に当たっては、下記の委員会を設置して調査、検討を進めてきたものである。

なお、集成材の製造及び曲げ強度試験には、下記の各県試験場、日本集成材工業協 同組合及び下記の各集成材メーカーのご協力をいただいた。

委員及び関係各位に深甚なる謝意を表する次第である。

集成材製造技術検討委員会 委員名簿

委員長 倉田久敬 高岡短期大学産業工芸学科 教授

委 員 吉田弥明 静岡大学農学部 教授

" 橋 爪 丈 夫 長野県林業総合センター 主任研究員

√ 長 谷 川 智 富山県林業技術センター 木材加工課長

〃 池田潔彦 静岡県林業センター 技師

〃 富田守泰 岐阜県林業センター 成材機械科長

" 金子吉汪 日本集成材工業協同組合 専務理事

" 齋藤 健 齋藤木材工業株式会社 工場長

// 并上元康 小池木材株式会社構造設計部

" 松 本 善 裕 川島建設合資会社大断面事業部 設計営業部長

" 安保泰男 セブン工業株式会社技術部

平成7年3月

(財)日本住宅・木材技術センター 理事長 下 川 英 雄

要約

構造用集成材は、JAS規格でひき板の積層数が4以上のものとされているが、そのニーズが高まる中で、積層数が2ないし3であるものも利用できるようJAS規格等公的規格を制定してほしいとする要請が高まっていること及び2ないし3層の構造用集成材は、間伐材等小径木の利用拡大を図るうえで有望な製品であり、この面からもこの利用を促進し得るよう公的規格の制定が望まれることから、間伐等小径木の利用拡大を図る観点から、スギ等を原料とする2及び3層の構造用集成材を試作して、その強度特性等の面での所用の資料を調整し、これをJAS規格等公的規格の制定に向けた検討と3層集成材の安定的生産の促進に資することを目的とするものである。

本年度は、対象樹種としてカラマツ、スギ、シベリアカラマツを取り上げ、各工場での標準的な製造工程・製造条件によって供試集成材を製作し、初期曲げ強度試験結果を取りまとめた。

なお、3層集成材の製造基準(案)を提示した。

キーワード

3層集成材、挽板、多層積層、強度性能、等級区分、接着層、剥離、ラミナ、縦継ぎ、 曲げ強度試験、接着力試験、フィンガージョイント, JAS、破壊試験、乾燥、曲げヤン グ係数、グレーディングマシン、撓み、含水率、狂い測定、集中節径比、製造基準、保証 荷重試験、縦接合

目 次

1	はじ	めに		1
2	3層	集成	対の製造と曲げ試験	4
2.	1	カラ	マツで製造した3層集成材の性能評価(長野県)	4
2.	1.	1	製造した3層集成材	4
2.	1.	2	材料と方法	4
2.	1.	3	試験結果	7
2.	1.	4	総括	1 4
2.	2	静區	間県産スギによる3層集成材の製造と曲げ試験	2 0
2.	2.	1	はじめに	2 0
2.	2.	2	集成材の製造過程およびその課程における調査・試験	2 0
2.	2.	3	おわりに	3 2
2.	3	シ^	ドリア産カラマツを用いた三層集成材の製造と強度性能(富山県)	4 1
2.	3.	1	供試集成材の製作と構成ラミナの曲げヤング係数測定	4 1
2.	3.	2	ラミナのMOE	4 1
2.	3.	3	ラミナの含水率	4 1
2.	3.	4	ラミナの縦接合とその曲げ強度性能	4 1
2.	3.	5	供試ラミナの最大集中節径比	4 2
2.	3.	6	ラミナの仕組みと三層集成材の製造	4 3
2.	3.	7	シベリア産カラマツ三層集成材の強度性能	4 3
2.	3.	8	まとめ	4 6
3	3厘	集原	戊材の製造基準(案) ·	4 7
3.	1	想是	它される3層集成材の製造工程	4 7
3.	2	3 原	圏集成材の製造基準(案)	4 9
4	接着	力性	生能試験	5 4
4.	1	供詞	式接着剤の接着性能	5 4
4.	2	作原	成試験体の接着性能	5 4
4.	3	試具	簽結果	5 5
5	おれ	001		5 6

		•	

1 はじめに

構造用集成材に関する現行の日本農林規格(集成材の日本農林規格の構造用集成材及び 化粧ばり構造用集成材、構造用大断面集成材の日本農林規格)では、挽板の積層数は5枚 以上または4枚以上となっている。その理由としては、

- 比較的薄い挽板を多数積層すると欠点が分散され、集成材の強度性能のバラツキが小さくなるが、その効果は積層数が4~5以上で現れ始めることが経験的に判っている。 挽板の等級区分を熟練が必要な視覚的等級区分法に頼っている場合には、どうしても 各等級に区分された挽板の強度性能にはバラツキが生じることになる。挽板の強度性能のバラツキが避けられないとするなら、安定した強度性能の集成材を得るためには 積層数を多くしなければならず、少なくとも4~5層以上が必要となる。
- 挽板の厚さが厚くなると水分勾配の小さい良好な乾燥が困難となり、集成材になった後で狂いが発生したり、接着層の剝離が発生したりする危険性が増す。我国で生産量が多いのは俗にいう集成柱であるが、その積層方向の寸法である約10cmを、比較的良好な乾燥状態が期待できる挽板厚さ2~2.5cmで割ると、積層数は4~5層となる。

等があげられる。

挽板の等級区分については機械的等級区分法の研究が進み、実用可能な等級区分機(SGM=Stress Grading Machine)の開発によって、強度性能の正確な判定ができるようになってきた。従って、積層数の多少に拘わらず、集成材の強度性能のバラツキは少なくなると期待される。

他方、厚さの厚い挽板の良好な乾燥ということに関しては、事情は以前とあまり変わっていないようにみえる。集成柱(10.5cm角)を2層で作ろうとすると挽板の厚さは5.3cmにもなり、3層でさえ3.5cmになる。日本農林規格や日本木材加工技術協会の製造基準では挽板の厚さは5cm以下となっているが、ほとんどのメーカーでは集成柱に3cm以上の挽板を使うことには躊躇を感じるものと思われる。それは集成材になった後で、狂いが発生したり、接着層に剝離が生じたりしないということを実証するデータが不足しているためである。

近々、構造用集成材に関する日本農林規格の大幅改正が予定されているが、このような 事情を背景として積層数に関する制限の緩和が計画されている。そこでは、積層数が2の 集成材も製造可能になる予定である。

積層数の制限が緩和されれば3層集成材の製造は可能となるが、接着層に剝離が生じた り狂ったりするような集成材を作るわけには行かない。

本事業の目的は、一般的な集成材メーカーにおいて色々な意味での標準的な工程で3層 集成材(柱)を製造すれば、経時変化に伴う狂いの発生や接着層の劣化等は大丈夫だろう かという点を確認することである。従って、研究を目的としたような意図的な実験条件の 設定は一切行わず、製造条件は製造現場の実態を反映させるように、また経時変化を観察 するための暴露条件も成り行きにまかせるようにした。

試験の全体の流れを図1-1に示す。

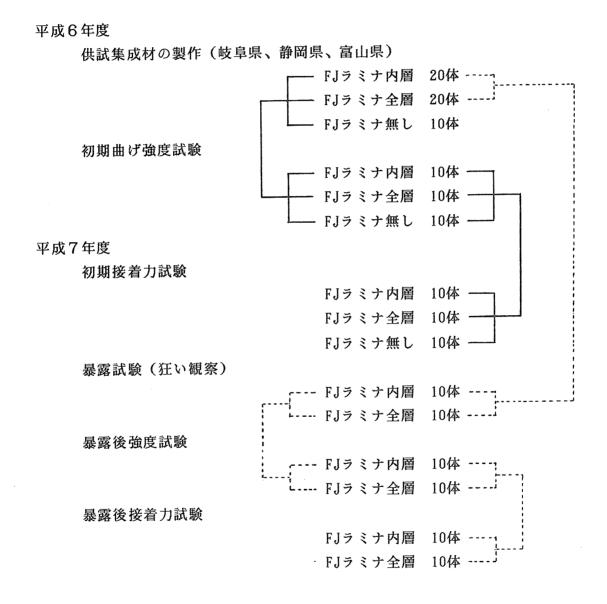


図1-1 試験の流れ

全国から何社かの集成材メーカーを選定して供試集成材の製造を依頼し、試験は集成材メーカーの工場が立地する各県の試験場が担当した。結果として長野、静岡、富山の各県でメーカーと試験場のペアが成立した。試験の対象とする樹種は各県の事情を勘案して、

長野県はカラマツ、静岡県はスギ、富山県はシベリアカラマツとした。また、接着関係の 試験は、静岡大学農学部森林資源科学科が担当した。

供試集成材は、3層全部をフィンガージョイントで縦継ぎしたラミナ(FJラミナと称する)で構成したもの、内層にのみ配置したもの、全く使用しないものの3種類とし、それぞれ20体、20体、10体製作した。製作した集成材のうちFJラミナ全層配置、内層配置のもの各10体、FJラミナ無しのもの10体を初期曲げ強度試験と初期接着力試験に供した。残余のFJラミナ全層配置、内層配置のもの各10体は約1年間屋内暴露に供し、その間に発生する狂いを観察し、その後曲げ強度試験、接着力試験に供する。

使用したラミナの品質測定方法や集成材の各種試験方法、最低採取すべきデータ等については統一してあるが、その他の事項についてはオプショんとして各県の意向にゆだねている。試験の主旨から、集成材の製作は各メーカーそれぞれの標準的な工程に拠った。

今年度は使用したラミナの品質・性能、製作した集成材の初期曲が強度性能について報告する。また、3層集成材の製造基準について、叩台としての案を提示する。

- 2 3 層集成材の製造と曲げ試験
- 2.1 カラマツで製造した3層集成材の性能評価

長野県林業総合センター 斎藤木材工業株式会社

はじめに

現行の構造用集成材の日本農林規格(JAS)では1級は5層以上、2級は4層以上と規定されている。したがって、ラミナ構成が3層の集成材は現行のJASには適合しないが、柱あるいは大引き、母屋等の横架材に需要が見込まれる。また、それらは製材に比較すれば寸法的にも、強度面からもその性能が向上することが期待できる。特に製材の狂いが大きいカラマツの場合、新たな利用分野としての展開が期待される。

このような背景の中でカラマツ3層集成材を製造し、その性能評価を試みた。

平成6年度は主として製造および水平積層梁としての曲げ破壊試験を実施し、垂直 積層および寸法安定性に関わるものは平成7年度に実施する。

試験は長野県林業総合センターと斎藤木材工業㈱が共同して進めた。試験に参加した主な職員は次のとおりである。

長野県林業総合センター:橋爪丈夫、吉田孝久

斎藤木材工業(株)

: 斎藤健、村井勇睦、竹内剛

2.1.1 製造した3層集成材

はじめにこの試験で製造した集成材の概要を表-1に示した。

one description and the second an	製造した3層集成	は材の概要	hhitasi khita vi lakalahti vi lakalahti monasa vi mengan da sala kasasi da sa mengan menasa mengalan serini
Hadri with a program process the content of the party of	曲げ試験用	形質変化測定用	計
FJ内層集成材	11	1 1	22
FJ全層集成材	11	11	22
無FJ集成材	11	National	11
possession and accompany of the action of the company of the compa	$rac{3}{3}$	22. 2 una morto constante que con sense frances en uniciparion na constante con consecutor de contente a mente consumera con	55

注) このほかにFJ曲げ試験用ラミナ10枚

2.1.2 材料と方法

(1) 材料および乾燥

カラマツ挽板180枚($42 \times 125 \times 3000$ mm)を東信地方の製材工場より得て、人工 乾燥を行った。人工乾燥は長野県林業総合センターに設備している蒸気式 1 F 型乾燥 装置を用い 2 回に分けて実施した。乾燥スケジュールは初期蒸煮 $95 \, \mathbb{C}$ 、5時間の後、 乾球温度 $100 \, \mathbb{C}$ 一定で、含水率に従い、乾湿球温度差5、10、15、20、25、 $30 \, \mathbb{C}$ とし、 調湿は $80 \, \mathbb{C}$ 、 $5 \, \mathbb{C}$ 差5 時間とした。仕上がり含水率は2 枚の試験材の平均で初回 $12.1 \, \mathbb{C}$ 、 2回目10.0%であった。

(2) 連続走行式グレーディングマシンMGFS251について

乾燥仕上がり材176枚を斎藤木材工業において38mmに荒プレーナー掛けし、MGF S251 (飯田工業㈱製) により曲げヤング係数MGFSEを測定した。

MGFS251はローラー間をラミナが通過する間に、第1段階は上面より一定量、第2段階では下面より一定量たわませ、その反力から曲げヤング係数を連続的に算出するもので、二つの段階の測定値を平均することでラミナのそり等の影響を受けないシステムになっている。

MGFSEはラミナの両端を除き、5.6 cm間隔で曲げヤング係数を計測し、その平均値(MGFSEAVG)、あるいは最小値(MGFSELOW)で管理するシステムになっている。主な仕様は表-2のとおりである。

<u>表-2</u> 連続走行式グレーディングマシンMGFS251の仕様

	区分	仕様
1	測定可能寸法	材厚:15~40mm、幅:80~240mm、長さ:2000mm以上
2	送材速度 *1	40~120m/min、インバータにより可変
3	サンプリング間隔*2	最短14mm、7mmピッチで任意に設定可能
4	反力の測定	500kgロードセル
5	たわみ量の測定	リニアゲージ
6	所要動力	$3.7 \text{ k W} \times 2$, $0.4 \text{ k W} \times 1$
7	等級区分の方法	5 段階、スプレー着色および自動仕分け

*1:測定は通常120m/min

*2:通常56mmピッチ

(3) ラミナの区分とラミナの調査

ラミナのMGFSEの測定は工場の通常の測定条件である送材速度120m/min、サンプリング間隔は56mmで行った。ラミナの区分はMGFSEAVGで行った。MGFSEAVGを順位化し、高いほうから120枚を外層用ラミナとし、残りを内層用ラミナとした。

外層用のうち12の倍数番10枚をFJラミナの曲げ試験用とした。

残った外層用ラミナのMGFSEの高いほうから1、2番をFJ内層用集成材1番の外層、3、4番をFJ全層集成材1番の外層、5、6番を無FJ集成材1番の外層に割り付け、以後これを繰り返した。

内層用ラミナも同様に順位1番をFJ内層集成材1番の内層、2番をFJ全層集成材1番の内層、3番を無FJ集成材1番の内層という方式で割り付けた。

以上の割り付けは集成材を製造する本数の関係から次のように繰り返した。

(FJ内層→FJ全層→無FJ→ FJ内層→FJ全層)→繰り返し

すべてのラミナに中心線を入れ、FJ用ラミナについては中心線から21cmの位置に

FJ用のマーキングを行った。

ラミナは問題となるような腐れおよび割れはなく、全数を集成材製造の対象とした。 節等の調査は次のとおりに行った。

集中節 : ラミナの全長、および中央(90 c m区間)に対して行った。

平均年輪幅:視覚により6mm以上か否かを判断した。

髄 : 芯持ち、芯付、芯去りの区分を行った。

含水率 : 含水率計によりラミナの両端50cm、中央の3箇所を測定した。 動的ヤング係数(Ef):FFTアナライザを用い、基本振動数と比重から算出した。

(4) ラミナの組み合わせとラミナ番号の変更

ラミナの調査と同時にその組み合わせを行い、集成材の番号を整数部分とし、少数部分にラミナの位置を示した。たとえば2.1および2.3は集成材番号2の外層、2.2は内層である。

(5) FJ用ラミナの縦継ぎ

FJ用ラミナはマーキング部分で横切りし、復元する形で縦継ぎを行った。その条件は次のとおりである。

フィンガー形状:フィンガー長;23mm、ピッチ;6ミリ、先端厚さ;0.95mm、低部幅;0.8mm、スカーフ傾斜比;10°33 '

接着剤:主剤;レゾルシノール樹脂DF1200、硬化剤;パラホルムアルデヒドDL200 (大鹿振興)

接着条件:塗布量;300g/m, 圧締圧;50kgf/cm, 高周波接着

(6) 集成材の製造

集成材は通常の工程で、35mmに仕上げたあと積層圧締した。接着剤はレゾルシノール樹脂D300を用い、圧締圧は10kgf/c㎡とした。。

完成した集成材は断面 10.5×10.5 c m に仕上げた。種類別内訳は表-1 のとおりである。

(7) F J ラミナの曲げ試験

曲げ試験用のFJラミナは断面 10.5×3.5 c mに仕上げ、スパン90 c m 3 等分点荷重で曲げ試験を行った。試験材は10 枚であったが、1 枚データがとれなかったので、結果は 9 枚で検討した。

(8) 集成材の曲げ試験

FJ内層集成材、FJ全層集成材はその奇数番を、無FJ集成材についてはその全数を曲げ破壊試験に供した。したがって曲げ試験に供したものは各種類11本、計33本である。

試験条件は図ー1に示すように、スパン270cm、3等分点荷重である。破壊荷重

から曲げ強さを、スパンに対する変位と荷重から曲げヤング係数MOEをモーメントー 定区間に対応する変位から曲げヤング係数MOEmを算出した。

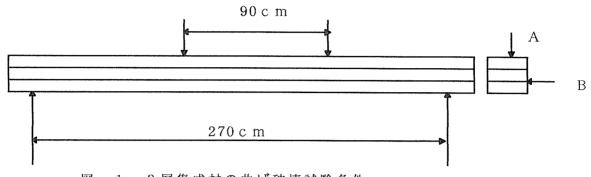


図-1 3層集成材の曲げ破壊試験条件

(9) 弱軸曲げ試験(非破壊)

すべての曲げ破壊試験は図ー1のA方向(水平積層)の状態で行ったが、破壊試験の前にB方向を上面にして、長期許容応力度レベルまで荷重をかけ垂直積層梁としての曲げヤング係数(MOE弱およびMOEm弱)を測定した。

(10) 狂い測定試験

曲げ破壊試験に供さなかったFJ内層集成材、FJ全層集成材各11本ずつの曲がり、ねじれ、含水率を測定した。この測定は平成7年度も継続するのでその結果は平成7年度報告書で報告する。

2.1.3 試験結果

(1) ラミナの調査結果

ア 集成材の種類に応じたラミナの概要 概要

表一3に製造した集成材ごとのラミナの概要を示した。MGFSEAVGによりラミナを仕分けしたので、各測定項目では集成材の種類ごとに平均値およびそのばらつきも大差がない。曲げ用のヤング係数が高いのは外層用に区分したラミナの中から選んだためである。

イ 構造用大断面集成材のJASによるラミナの区分

表一4に集中節(全長)、平均年輪幅、髄の有無でJAS格付けした結果を示した。 各ヤング係数の平均値では等級に応じているが、格外が4等よりも高い値であった。

表一3 集成材の種類に応じたラミナの概要

種類	枚数	区分	比重	含水率%		逐比%		MGFSE (t	f/cni)	Ef
1EAL	170				全長	中央	EMAX	ELOW	EAVG	tf/cmi
		AVG	0.535	11.3	21.7	21.7	125.7	112.4	119.6	126.7
曲げ用	. 9	MAX	0.596	15.0	39.4	39.4	169.1	155.1	162.7	181.9
	-	MIN	0.449	8.0	9.0	9.0	88.4	70.9	81.0	86.4
		STD	0.044	2.3	10.7	10.7	23.2	24.3	23.7	26.2
		CV%	8.3	20.4	49.1	49.1	18.5	21.7	19.8	20.7
engo grana anna al Vigardosharray markin		AVG	0.512	11.6	27.6	23.5	120.8	107.0	114.5	119.8
FJ内層用	66	MAX	0.665	26.7	52.0	52.0	172.0	159.6	166.0	187.0
		MIN	0.418	5.7	6.1	6.1	78.3	63.8	71.5	
		STD	0.061	4.0	10.7	10.9	22.6	22.0	22.3	28.2
		CV%	11.8	34.7	38.6	46.4	18.7	20.5	19.4	And the second s
grant and the second se		AVG	0.506	11.1	26.2	21.8	120.6	106.3	114.2	
FJ全層用	66	MAX	0.655	21.2	53.6	51.7	163.6	151.5	159.9	186.9
}		MIN	0.394	6.0	4.0	0.0	74.8	65.3	72.2	69.5
		STD	0.053	2.7	10.8	12.1	22.2	21.8	21.9	
		C V %	10.5	24.8	41.2	55.4	18.4	20.5	19.2	23.9
		AVG	0.502	10.7	26.0	20.3	121.5	108.1	115.3	121.6
無FJ用	33	MAX	0.604	18.2	67.3	67.3	162.6	151.5	155.8	
		MIN	0.388	6.7	8.0	0.0	75.6	63.8	72.2	70.8
		STD	0.056	2.4	14.0	15.6	22.6	22.8	22.5	
		CV%	11.2	22.7	53.7	76.8	18.6	21.1	19.5	22.8
A CONTRACT OF THE PARTY OF THE		AVG	0.509	11.2	26.5	22.1	121.1	107.2	114.8	
全体	174	MAX	0.665	26.7	67.3	67.3	172.0	159.6	166.0	<u> </u>
ĺ		MIN	0.388	5.7	4.0	0.0	74.8	63.8	71.5	
		STD	0.056	3.2	11.4	12.3	22.3	22.0	22.1	28.0
		CV%	11.0	28.7	43.0	55.5	18.4	20.5	19.2	23.2

表一4 JAS等級区分したラミナの概要

JAS等級	枚数	区分	比重	含水率%	集中質	7径比%		MGFSE (t	f/cni)	Ef
1	割合%			Γ	全長	中央	EMAX	ELOW	EAVG	tf/cmi
		AVG	0.546	13.2	9.4	8.4	141.2	128.1	135.6	146.9
1等	17	MAX	0.635	26.7	12.4	12.2	172.0	159.6	166.0	186.9
	9.8%	MIN	0.469	10.2	4.0	0.0	110.5	101.2	105.3	114.2
1 1		STD	0.048	3.9	2.4	3.1	20.3	19.6	19.8	
		C V %	8.8	29.6	25.0	37.2	14.4	15.3	14.6	18.2
		AVG	0.538	12.7	19.9	16.6	131.5	118.8	125.5	
2等	39	мах	0.660	23.7	24.4	24.4	169.1	155.1	162.7	181.9
	22.4%	MIN	0.439	7.8	13.3	0.0	98.2	76.4	89.8	85.0
1		STD	0.053	3.3	3.3	6.3	19.4	19.3	19.7	25.8
		CV%	9.8	25.8	16.5	37.8	14.8	16.2	15.7	19.3
		AVG	0.508	11.3	25.3	19.6	124.5	110.6	·118.4	123.9
3等	37	мах	0.655	21.2	32.9	32.0	171.1	147.7	155.3	187.0
1	21.3%	MIN	0.388	7.2	10.2	0.0	75.6	63.8	72.2	70.8
		STD	0.056	2.7	5.8	8.8	21.8	19.0	20.5	27.1
1		CV%	10.9	23.6	22.9	45.0	17.5	17.2	17.3	21.9
paper mette jakkajatu v eradisek	1955 za zgrobinov toda Albaria gjegoti	AVG	0.487	10.1	31.6	26.6	109.8	95.2	103.3	106.9
4等	73	MAX	0.665	24.7	47.1	47.1	148.2	131.3	138.2	172.7
	42.0%	MIN	0.394	5.7	8.0	7.9	74.8	63.8	71.5	68.6
		STD	0.050	2.8	9.1	10.9	18.3	18.2	18.0	
		CV%	10.2	28.0	28.8	40.9	16.7	19.1	17.4	20.7
Supple regional to recommend or province (40)	Vancous (10 to 2 to	AVG	0.495	9.8	53.4	48.6	115.1	99.5	107.2	110.9
格外	8	MAX	0.559	11.8	67.3	67.3	132.9	114.1	122.6	
]]	4.6%	MIN	0.448	8.8	50.1	21.9	97.9	83.7	92.2	88.9
		STD	0.035	0.9	5.4	11.9	12.2	12.2	11.4	
		CV%	7.1	9.1	10.1	24.4	10.6	12.3	10.6	The state of the s
		AVG	0.509	11.2	26.5	22.1	121.1	107.2	114.8	{
全体	174	MIN	0.665	26.7	67.3	67.3	172.0	159.6	166.0	187.0
	100.0%	MAX	0.388	5.7	4.0		74.8	63.8	71.5	
		STD	0.056	3.2	11.4	12.2	22.3	22.0	22.0	
		CV%	11.0	28.7	42.9	55.3	18.4	20.5	19.2	23.2

ウ 集中節径比、ヤング係数の分布

測定した項目のなかで、集中節径比(全長)とヤング係数のなかで連続走行式グレーディングマシンMGFS251の測定値のラミナ1牧あたりの平均値(MGFSEAVG)ヒストグラムと累積度数を図ー2、3に示した。

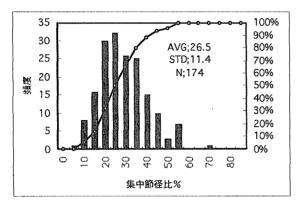
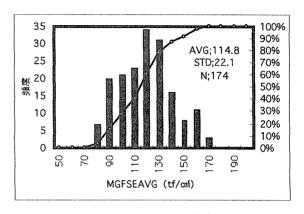



図-2 集中節径比(全長)の分布

図ー3 MGFSEAVGの分布

エ ラミナの各測定項目間の関係

表一5に相関係数一覧表を示した。比重と各ヤング係数の間には安定した関係が認められる。集中節径比との関係はそれほどではない。含水率が高いほどヤング係数は高い傾向にあるが、これは含水率計による測定であり、測定値が比重の影響を受けているためと考えられる。各ヤング係数の間の関係は高く、EfとMGFSEAVGの関係を図ー4に示した

	衣 5 フェアの古紀た気白雨の内が								
		比重	含水率%	集中全長	集中中央	MGFSEMAX	MGFSELOW	MGFSEAVG	Ef
ſ	比重	1.000							
ſ	含水率%	0.797	1.000					·	
	集中全長	-0.175	-0.233	1.000					
	集中中央	-0.158	-0.206	0.805	1.000				
	MGFSEMAX	0.704	0.413	-0.312	-0.274	1.000			
-[MGFSELOW	0.687	0.438	-0.340	-0.300	0.954	1.000		
	MGFSEAVG	0.702	0.429	-0.333	-0.297	0.990	0.984	1.000	
	Ef	0.674	0.391	-0.311	-0.301	0.961	0.934	0.961	1.000

表一5 ラミナの各測定項目間の関係

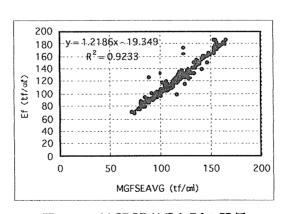


図-4 MGF SE AVGとEfの関係

(2) F J ラミナの曲げ破壊試験結果

結果を表-6に示した。曲げ強さ(MOR)の平均値は424kgf/cmであったが、ばらつきが大きかった。また、曲げ試験により求めた曲げヤング係数(MOE)は動的ヤング係数Efよりも9tf/cmほど低かった。破壊はFJ部がなんらかの影響を与えていたが、m2、m4、m7、m8に節、目切れ等の影響が認められた。

表一6	FJラミナの	FJラミナの曲げ破壊試験結果						
N.O	MOR	MOE	Ef					
m1	302	80.1	88.1					
m2	307	94.7	96.7					
m3	700	183.3						
m4	390	116.8	130.7					
m5	498	120.0	129.1					
m6	389	128.5	137.8					
m7	323	85.3	92.2					
m8	345	104.7	115.5					
m9	564	104.3	118.3					
MIN	302	80.1	88.1					
AVG	424	113.1	122.0					
MAX	700	183.3	189.9					
STD	136.3	30.8	31.1					
CV%	32.1	27.2	25.4					

表-7にMOR,MOE,Efの関係を示した。9枚の試験結果であるが、これらの間に高い関係が認められた。

衣一	7 MOR,N	,MOE,EIの関係			
	MOR	MOE	Ef		
MOR	1.000				
MOE	0.824	1.000			
Ef	0.842	0.993	1.000		

表-7 MOR, MOE, Efの関係

(3) 3層集成材の曲げ破壊試験結果

ア 曲げ破壊試験結果の集計

3層集成材の曲げ破壊試験結果の集計を表一8に示した。

曲げ強さ(MOR)、比例限度強さ(MOP)、全スパンに対応する曲げヤング係数(MOE)、モーメントー定区間におけるたわみから算出した曲げヤング係数(MOEm)、弱軸方向の曲げヤング係数(MOE弱、MOEm弱)、集成材の動的ヤング係数(Ef)、ラミナのヤング係数(MGFSElow、MGFSEavg、ラミナのEfの3種類)から等価断面法で算出した理論値(RLElow、RLEavg、RLEf)、3層集成材を構成するラミナ3枚の平均値もあわせて表ー8に集計した。

			- 22	曲げ破壊	試験		弱軸曲げ		基本振動	5 >	ナからのヨ	11 12 12 12 12 12 12 12 12 12 12 12 12 1	-S+2	枚の平均	± 1
種類	本数	比重	MOR	MOP	MOE	MOEm	MOE弱	MOEm霧	Ef Ef	RLElow	RLEavg	RLEf		LEavg,avg	
		7	kgf/cmi	kgf/cmi		tf/ori	tf/cmi	tf/cm	tf/cmi	tf/cm	tf/cm	tf/cmi	tf/cmi	tf/cmi	tf/cmi
		MIN	345	210	90.0	94.5	89.6	90.2						96.4	
FJ内層	11	AVG	433	299	113.6	121.6			115.9		126.7	132.1	108.8		
		MAX	665	463	157.2	164.8		150.4	155.0		163.2			145.1	158.7
1		STD	91.0	77.2	21.2	21.9			20.7	17.6		23.3		14.5	
		CV%	21.0	25.8	18.7	18.0					13.5			12.5	
		下限値	251.3	144.4	71.2	77.8	74.1	77.0						86.7	78.8
		MIN	293	210	92.9	96.0	89.2	90.3	92.0	CARL STREET, SQUARE, S	-	The state of the s	THE RESERVE TO THE RE		المستنبي المستنبس
FJ全層	11	AVG	380	263	113.6	121.6			116.6						
		MAX	462	349	148.9	163.6	144.4	162.7	150.9	148.5	156.6	175.1	128.6		
		STD	57.4	48.9	18.0	21.3	17.2	20.6	17.8	16.3	16.1	21.7	13.5	13.8	
		CV%	15.1	18.6	15.8	17.5	15.5	18.1	15.3	13.9	12.7	16.2	12.6	12.0	15.5
		下限値	264.8	165.6		79.0	76.8	72.9	81.0	84.9	94.2	90.7	79.6	87.7	83.8
		MIN	222	140	92.5	95.7	89.6	96.3	91.5	98.8	105.5	108.0	88.0	95.3	96.5
無FJ	11	AVG	448	265	114.2	119.2	112.2	116.7	116.9	119.0	126.2	134.0	108.1	115.3	
		MAX	685	396		157.6		150.6	146.0	147.5	153.8	174.0	132.9	137.9	152.2
		STD	126.4	73.5	20.6	20.2	14.9		16.5		16.1	21.3	14.5	13.8	16.7
		CV%	28.2	27.7	18.0	16.9			14.1	13.4	12.7	15.9	13.4	11.9	13.8
		下限値	195.0	117.9	73.1	78.9	Who have reason in the		83.9	Manager of Street Company of the Com	94.1	91.5	79.1	87.8	88.1
		MIN	222	140	90.0	94.5	89.2		89.3		105.5	105.5			
全体	33	AVG	420	276	113.8			115.4	116.5		126.4	133.4		115.4	121.0
		MAX	685	463	157.2	164.8		162.7	155.0		163.2	180.2	139.1	145.1	158.7
		STD	97.4	67.6		20.5			17.9		15.9			13.6	
		CV%	23.2	24.5	17.0	17.0	14.6		15.3						
L		下限値	225.4	140.4	75.1	79.8	78.6	79.1	80.8	86.4	94.6	90.6	79.9	88.3	84.6

表-8曲げ破壊試験結果等の集計

イ 曲げ強さについて

表一8に示した曲げ強さ(MOR)について図ー5に種類別に最大値、最小値、標準偏差の範囲で示した。平均値では高いほうから無FJ集成材、FJ内層集成材、FJ全層集成材の順であるが、ばらつきは無FJ集成材が最も大きく、FJ全層集成材が最も小さかった。

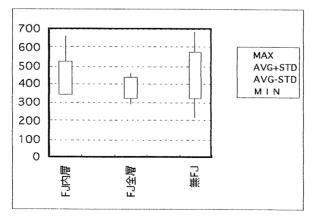


図-5 3層集成材の曲げ強さの種類別比較 Y軸は曲げ強さ (kgf/cm)

ウ 曲げヤング係数と曲げ強さの関係

曲げ破壊試験時の曲げヤング係数と曲げ強さの関係を集成材の種類別に図ー6から図ー8に示した。無FJ集成材における関係が最も高く、FJ内層集成材の関係が低かったが、本数も少ないためより多くのデータの蓄積が必要だろう。

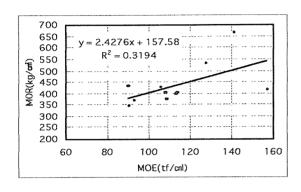


図-6 MOEとMORの関係 (FJ内層集成材)

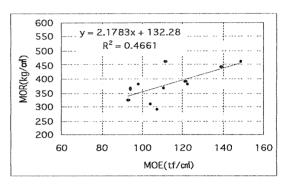


図-7 MOEとMORの関係 (FJ全層集成材)

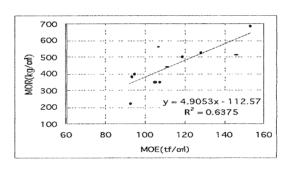


図-8 MOEとMORの関係 (無FJ集成材)

エ 集成材の動的ヤング係数 (Ef) と曲げヤング係数 (MOE) の関係

図ー9に示すようにきわめて高い関係が認められる。これはこの集成材がMGFSEA VGにより厳密に管理された状態で作製されたからであろう。

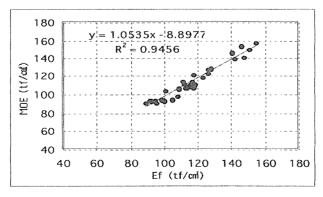


図-9 3層集成材のEfとMOEの関係

オ ラミナのヤング係数から理論値と集成材の曲げヤング係数

図-10から12にラミナからの理論値と実際の集成材のMOEの関係を示した。いずれの場合も理論値のほうが高い値であるが関係はきわめて高い。

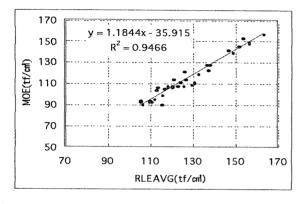


図-10 RLEAVGとMOEの関係 (全集成材)

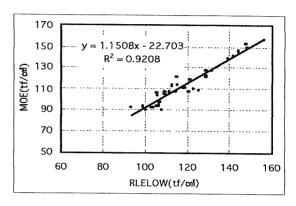


図-11 RLELOWとMORの関係 (全集成材)

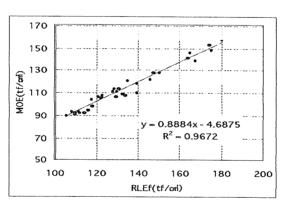


図-12 RLEfとMOEの関係 (全集成材)

2.1.4 総括

カラマツ3層集成材を製造し、その性能評価を試みた。試験結果の概要は次のとおりである。

- 1 使用したラミナ174枚のJAS格付けの結果では1等9.8%、2等22.4%、3等21.3%、4等42.0%、規格外4.6%であった。
- 2 ラミナのヤング係数の測定で動的ヤング係数と走行式グレーディングマシン MGFS251の測定値との関係はきわめて高かった。
- 3 3 層集成材の曲げ強さは平均値では無FJ集成材が高かったが、ばらつきはFJ全層 集成材が最も少なかった。
- 4 3 層集成材の曲げヤング係数と曲げ強さの間には、特に無FJ集成材に高い関係が 認められた。
- 5 3 層集成材において動的ヤング係数と曲げヤング係数との間にきわめて高い関係が認められたが、これは厳密にヤング係数で管理された状態で集成材が製造されたためと考えられる。
- 6 ラミナのヤング係数から計算される3層集成材の理論値は破壊試験による曲げヤング係数よりも高い傾向にあったが、関係はきわめて高かった。
- 7 狂い等の経時変化は平成7年度に測定し、7年度事業として報告する。

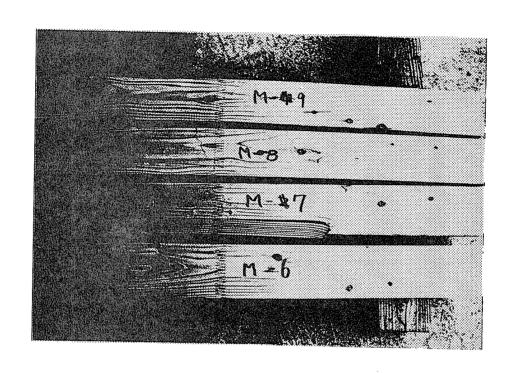


写真-1 FJラミナ曲げ破壊の状況 (例)

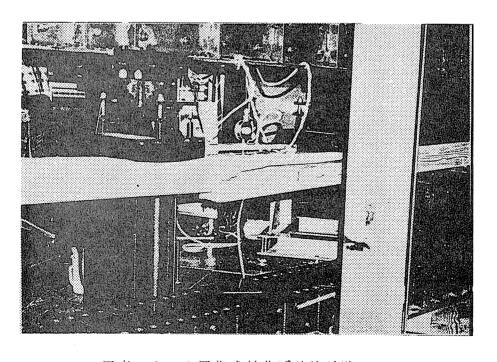


写真-2 3層集成材曲げ破壊試験

付 ラミナの 調査 (1

	7=	1 11.00	1	LL etc.			ミナの調金		MGFSE(tf	/orl)*2	Ef	随*3	年輸*4	_ <u> </u>	水率 (%)	T
番号	種類	Na.*1	JAS	比重	平均		上(%)				E1				測定2	
L	1		等級*5	لـــــا	含水率%	全長	中央 17.0	MAX I	LOW	AVG I	96.4	<u>有無</u> 2	· 幅 2		<u> 測定21</u> 7.5	測定3
	曲げ用	m1	4	0.449	8.0	17.9	17.9	88.4	70.9	81.0	86.4	3	1		15.0	14.0
2		m2	1	0.512	14.7	9.0	9.0	110.5	101.8	105.3	114.2		1			
	3 曲げ用	m3	2	0.596	12.0	23.0	23.0	169.1	155.1	162.7	181.9	3		15.0	11.0	10.0
	4 曲げ用	m4	1	0.578	11.0	9.0	9.0	132.8	107.3	122.1	126.2	3	1	10.0	10.5	12.5
	5 曲げ用	m5	4		9.7	32.6	32.6	132.8	122.3	127.7	131.1	2			10.0	10.0
	5 曲げ用	m6			11.7	18.3	18.3	145.2	135.5	141.7	139.0	3	1		11.5	13.5
7	7 曲げ用	m7			9.7	15.5	15.5	108.6	92.7	100.7	107.7	3	1		8.5	10.0
8	3 曲げ用	m8	3		15.0	31.1	31.1	122.8	117.2	119.4	134.6	3	1		14.5	15.0
Ç	3 曲げ用	m9	4	0.515	10.3	39.4	39.4	121.2	108.6	115.8	119.0	3	2		10.0	11.5
10	O FJ内層	1.1	1	0.617	14.2	6.1	6.1	170.1	157.1	164.9	180.2	3	1		15.5	11.5
1	1 FJ内層	1.2	. 3	0.476	11.5	30.9	30.9	106.6	100.6	104.5	110.3	3	1	13.0	11.5	10.0
1:	2 FJ内層	1.3	1	0.583	12.0	12.2	12.2	172.0	159.6	166.0	185.7	3	1	11.0	13.0	12.0
1:	3 FJ内層	2.1	1	0.560	12.2	11.2	11.2	163.3	146.1	155.1	173.8	3	1	13.0	12.0	11.5
14		2.2	4	0.477	10.7	32.8	21.8	106.0	88.7	101.5	107.3	1	2	9.0	11.0	12.0
1		2.3	3	0.580	13.3	30.1	6.1	171.1	128.7	154.4	187.0	3	1	15.0	13.5	11.5
1:		3.1			9.8	25.1	9.2	152.6	141.9	148.2	164.9	3	1	10.0	10.0	9.5
1		3.2			12.7	23.5	18.3	110.6	93.9	100.0	132.4	3	1	12.0	12.0	14.C
18		3.3			11.7	23.2	10.3	154.4	145.4	148.8	165.5	3	1		11.5	11.5
1:		4.1			19.8	13.3	8.9	153.1	140.2	146.7	159.2	3	1	21.0	18.0	20.5
2		4.2			10.8	19.4	10.1	103.3	97.1	99.8	99.5	3			13.5	9.5
2				0.635	26.7	8.0	8.0	152.9	135.0	146.5	150.0	3			26.0	28.0
		4.3			10.0	20.8	20.8	144.7	131.9	139.5	149.9	3			10.0	10.0
27		5.1			10.7	34.1	34.1	105.8	92.9	98.2	98.1	3	1		10.5	10.5
2:		5.2			11.3	22.5	22.5	143.7	134.3	139.6	147.8	3			11.0	11.0
24		5.3						142.1	126.0	136.4	148.2	3			25.0	21.0
2		6.1			23.7	18.6	18.6				101.5	. 2				
21		6.2			9.7	27.8	27.8	106.6	88.2	97.0					8.0	11.0
27		6.3			8.0		39.7	138.0	129.7	134.5	141.9	3	1		9.0	7.0
2		7.1			16.8	23.0	23.0	137.2	127.0	131.5	133.1	3	1		19.0	15.0
2		7.2			9.0	14.6	14.6	98.7	91.5	95.7	94.5	1			11.0	8.0
30	O FJ内層	7.3	3 2		14.7	24.3	24.3	135.0	126.0	130.5	135.0	3			15.0	15.0
3	1 FJ内層	8.1	4	0.555	13.8	33.4	33.4	138.3	122.7	129.4	133.8	3			14.5	14.5
3	2 FJ内層	8.2	. 4	0.504	9.2	33.9	33.9	105.8	80.7	95.3	101.0	2	2	9.5	8.0	10.0
33	3 FJ内層	8.3	4	0.496	8.0	28.2	10.1	133.5	127.0	129.6	125.0	2	1	8.5	8.5	7.0
3	4 FJ内層	9.1	3	0.540	13.2	28.3	28.3	140.5	111.9	127.9	128.1	3	1	12.0	11.5	16.0
3	5 FJ内層	9.2	4	0.577	15.3	41.0	27.6	98.4	91.2	94.9	91.9	3	1	16.0	15.5	14.5
3	6 FJ内層	9.3	. 3	0.515	10.7	21.8	21.8	132.9	120.8	128.0	131.6	3	2	11.0	12.0	9.0
3	7 FJ内層	10.1	4	0.597	16.3	37.5	37.5	130.8	120.8	126.4	130.3	3	1	16.0	16.5	16.5
3		10.2		0.465	10.0	50.2	21.9	97.9	83.7	92.2	99.7	1	1	10.0	10.5	9.5
39		10.3	. 4	0.665	24.7	15.9	15.9	132.4	117.8	126.2	126.7	1	1	24.5	26.0	23.5
4		11.1		0.492	7.8	28.1	19.3	130.8	118.7	124.1	130.3	3	1	7.5	8.5	7.5
4		11.2			5.7		44.7	99.6	82.6	91.5	100.3	2	2	6.0	5.5	5.5
4		11.3			10.8	28.5	28.5	132.2	112.5	124.1	116.3	3			10.5	11.0
4:		12.1			12.5		42.2	128.9	115.5	122.9	172.7	3	1	13.5	12.0	12.0
4		12.2			9.3		41.8	100.4	79.9	91.3	92.5	2			8.0	11.0
4		12.3			10.5	17.9	17.9	128.9	115.5	123.9	125.8	2			11.5	8.5
4		13.1			13.8		27.4	127.5	114.6	122.5	127.8	3			14.5	14.0
		13.1			11.3		24.6	97.1	82.0	89.4	87.7	2	1		10.0	12.0
	7 FJ内層								113.3	122.3	136.5	3			10.5	11.0
	B FJ内層	13.3			11.7		16.8	127.3								
	9 FJ内層	14.1			10.2		8.2	123.5	108.1	118.0	119.6	3			10.0	9.0
	D FJ内層	14.2			9.5		25.9	90.4	87.2	88.7	86.0	3			8.0	11.5
5		14.3			9.0		52.0	123.8	114.1	118.0	122.8	3	1		9.0	6.5
	2 FJ内層	15.1			7.8		36.3	120.5	111.4	116.4	123.3	3	1		8.0	7.5
	3 FJ内層	15.2					9.9	88.7	84.2	86.0	86.5	2			9.0	9.0
	4 FJ内層	15.3			9.2		34.0	126.2	105.8	116.6	97.6	2			8.5	10.0
	5 FJ内層	16.1			11.8		24.0	128.3	100.4	116.4	127.5	2			12.0	11.5
	6 FJ内層	16.2			6.7		31.8	97.4	69.4	85.5	94.0	2			7.0	7.0
	7 FJ内層	16.3		0.444 が奪 成材NC	7.8		12.2	126.7	105.5		122.2	2	1	8.5	8.0	7.0

^{*1;}ラミナの仕組; NO.の整数部分が集成材NO、少数部分がラミナの配置を示す。m1からm9は曲げ試験用FJラミナ

^{*2;} MGFSEはMAX,LOW,AVGを記載した。ラミナの組み合わせはAVGによった。
*3: 髄の有無; 芯持を1、芯付2、芯去り3で表示した。。
*4; 年輪幅; 見た感じで平均年輪幅6mmを超えるもの2、超えないもの1
*5; JAS等級5は規格外

付表 ラミナの調査 (2)

			,				ミナの調査									
番号	種類	No.*1	JAS	比重	平均	節経上	t (%)		MGFSE(tf	/cmi)*2	Ef	随*3	年輪*4	合	水率 (%)	
<u> </u>			等級*5		含水率%	全長	中央	MAX	LOW	AVG		有無	幅	測定1	測定2	測定3
58	FJ内層	17.1	1	0.493	11.8	12.1	12.1	117.6	111.1	115.2	119.1	3	1		12.0	11.5
59	FJ内層	17.2	4	0.523	11.3	35.8	35.8	88.7	78.5	84.2	85.1	2			11.0	10.0
60	FJ内層	17.3	4	0.545	12.7	36.8	22.5	130.0	101.7	114.6	125.0	3	1	11.0	13.0	14.0
61	FJ内層	18.1	3	0.438	8.7	15.7	15.7	119.2	104.6	112.7	116.9	3				
62	FJ内層														9.0	7.0
		18.2		0.451	7.5	25.2	25.2	86.9	73.7	81.9	79.7	3			8.0	7 <i>.</i> 5
63	FJ内層	18.3	2	0.447	7.8	15.3	15.3	118.1	106.6	112.2	114.8	3	1	8.0	6.5	9.0
64	FJ内層	19.1	4	0.477	9.5	28.7	28.7	113.8	106.8	110.8	112.8	2	1	9.5	10.0	9.0
65	FJ内層	19.2	4	0.512	13.0	38.1	38.1	87.2	73.7	80.1	75.5	3	2	13.0	14.0	12.0
66	FJ内層	19.3	3	0.462	10.5	30.6	30.6	117.0	102.5	110.7	113.9	3	1	11.5	10.0	10.0
67	FJ内層	20.1	4	0.479	9.7	44.9	16.2	117.3	103.1	109.9	109.6	3	1		9.0	9.0
68	FJ内層	20.2	4	0.456	10.5	45.7	45.7	82.9	76.2	79.1	76.6	3			10.0	10.5
69	FJ内層	20.3		0.660	20.7	21.9	21.9	114.9	104.9	110.5	108.3	3			21.5	18.5
70	FJ内層	21.1	2	0.484	11.0	24.4	24.4	111.9	102.5	107.4	106.5	3				
71	FJ内層	21.2		0.486											11.0	10.0
					10.3	33.1	33.1	85.9	63.8	73.7	68.6	1		10.5	11.5	9.0
72	FJ内層	21.3		0.468	8.0	19.9	14.0	112.8	99.8	108.2	107.3	2	2	7.0	8.5	8.5
73	FJ内層	22.1		0.448	11.0	22.2	22.2	107.9	101.4	105.3	103.7	3	1	10.0	10.5	12.5
74	FJ内層	22.2	. 4	0.450	10.3	28.2	28.2	78.3	67.8	71.5	71.0	2	1	11.5	9.0	10.5
75	FJ内層	22.3	4	0.464	8.5	29.8	13.1	108.1	101.9	105.5	106.4	2	1	9.0	9.0	7 . 5
76	FJ全層	23.1	2	0.537	10.3	16.2	4.1	163.6	150.4	157.4	176.5	3	1	12.0	11.0	8.0
77	FJ全層	23.2		0.468	8.5	12.9	12.9	116.3	83.9	102.5	116.9	2	2		8.0	10.0
78	FJ全層	23.3		0.571	12.3	21.1	10.5	163.1	151.5	159.9	178.3	3				
79	FJ全層	24.1	3	0.655	21.2	26.5									12.0	14.0
							15.5	163.1	147.7	155.3	177.4	3			22.0	20.5
80	FJ全層	24.2		0.431	10.8	16.6	9.9	105.2	96.9	101.8	104.5	2			10.0	9.5
81	FJ全層	24.3	1	0.570	10.8	4.0	4.0	163.6	145.6	155.7	186.9	3	1	9.5	11.5	11.5
82	FJ全層	25.1		0.592	15.5	15.7	15.7	158.8	137.2	148.9	163.0	3	1	14.5	17.0	15.0
83	FJ全層	25.2	4	0.487	9.2	43.8	19.9	106.3	95.8	101.0	107.5	3	2	9.0	9.0	9.5
84	FJ全層	25.3	3	0.576	14.7	32.0	32.0	157.7	144.7	152.9	172.9	3	1	15.0	13.0	16.0
85	FJ全層	26.1		0.572	13.0	23.9	23.9	150.4	133.2	142.6	161.1	3			13.0	13.0
86	FJ全層	26.2		0.511	10.7	24.4	0.0	104.4	94.4	98.5	102.0	3			10.0	
87	FJ全層	26.2		0.582	15.7	25.4	25.4									8.5
88								148.6	134.5	142.6	155.7	3		16.0	16.0	15.0
	FJ全層	27.1		0.518	10.8		18.0	146.1	128.7	138.7	146.2	3			10.0	12.C
89	FJ全層	27.2		0.521	12.0		0.0	101.7	91.5	97.6	100.6	3			15.0	10.0
90	FJ全層	27.3	2	0.566	14.7	14.9	14.9	145.6	131.3	139.2	148.4	3	1	15.0	15.0	14.0
91	FJ全層	28.1	1	0.513	10.5	6.2	6.2	140.7	131.5	136.4	154.4	3	1	9.5	12.0	10.C
92	FJ全層	28.2	2	0.486	10.3	17.3	17.3	106.6	92.6	97.2	92.6	3	1	10.0	9.5	11.5
93	FJ全層	28.3	2	0.553	11.0	16.1	16.1	142.1	129.2	137.0	144.3	3			10.0	10.5
94	FJ全層	29.1	4	0.507	10.0	22.8	14.0	138.0	124.8	132.2	140.9	2			10.0	12.0
95	FJ全層	29.2		0.507	11.8	22.0	22.0	98.7	92.6	96.3	93.1	2				
96	FJ全層	29.3		0.565					123.0						11.5	10.5
					13.8	31.0	4.1	139.4		132.2	141.1	3			13.0	14.5
97	FJ全層	30.1		0.516	11.0	17.9	4.1	133.5	121.1	129.0	137.1	3			14.0	9.0
98	FJ全層	30.2		0.460	10.0		50.1	99.8	90.4	95.3	92.8	3			10.0	10.0
99	FJ全層	30.3		0.540	10.7	29.9	29.9	137.2	121.1	128.5	123.0	3	1	11.0	11.0	10.0
100	FJ全層	31.1	2	0.504	9.7	22.4	18.8	139.4	113.0	127.8	138.2	3	1	10.0	10.0	9.0
101	FJ全層	31.2	4	0.486	11.5	29.9	15.9	96.9	91.2	94.4	96.7	2	2	13.0	10.5	11.0
102	FJ全層	31.3		0.475	7.2	40.9	32.7	132.7	118.4	127.3	134.2	3			6.0	7.5
103	FJ全層	32.1		0.463	13.5	18.2	18.2	130.8	120.0	126.7	131.0	3			13.0	13.5
	FJ全層	32.2		0.448	9.8	53.6	43.8	102.8	84.5	93.7	88.9	3			10.0	9.0
105	FJ全層	32.3		0.501	12.7	22.2	22.2									
								132.7	121.3	126.5	136.7	3			14.0	12.0
	FJ全層	33.1		0.530	11.7	21.1	21.1	129.7	119.5	125.3	128.6	3			12.0	12.0
	FJ全層	33.2		0.470	10.3		24.6	105.5	71.0	91.8	99.8	2			10.0	12.0
	FJ全層	33.3		0.493	9.5		34.6	130.5	121.1	125.2	129.4	3		11.0	8.0	9.5
109	FJ全層	34.1	5	0.491	9.2	51.7	51.7	132.9	111.6	122.6	129.6	3	1	10.0	8.5	9.0
110	FJ全層	34.2	2	0.488	12.2	22.1	22.1	104.9	76.4	89.8	85.0	3	1		11.5	12.0
	FJ全層	34.3		0.541	12.3	18.2	8.1	125.7	119.2	122.8	163.2	3			13.0	10.C
	FJ全層	35.1		0.555	14.7		17.9	126.5	110.8	121.3	126.8	1			16.0	16.0
	FJ全層	35.2		0.500	11.0		36.9	92.0		89.2	87.7	2				
															12.0	9.0
	FJ全層	35.3		0.576	12.8		26.9	127.5	109.5	121.9	134.9	3			13.0	12.5
	FJ全層	36.1		0.479	7.0		20.0	126.0	108.4	118.6	130.8	2			7.0	7.0
	FJ全層	36.2			8.0		16.7	93.4		88.8	88.7	2	2	6.5	10.0	7.5
41 . = 5	ミナの仕組	. NO OI	かかかかり ノしょ	3 4 to -12 4-4 5 1 C	1、水水かな!	V42 - 4.	小 ま1 8型 セ :	=+1	A > 0 1-4	44.144.00	ar := > 4					

¹¹⁶ FJ至暦 36.2 4 0.402 8.0 19.8 16.7 93.4 81.5 88.8 88.7 **1; ラミナの仕鎖; NO.の整数部分が集成材NO.、少数部分がラミナの配置を示す。m1からm9は曲げ試験用FJラミナ*2; MGFSEはMAX,LOW,AVGを配載した。ラミナの組み合わせはAVGによった。**3; 髄の有無; 芯持を1、芯付2、芯去り3で表示した。。**4; 年輪幅; 見た感じで平均年輪幅6mmを超えるもの2、超えないもの1 **5; JAS等級5は規格外

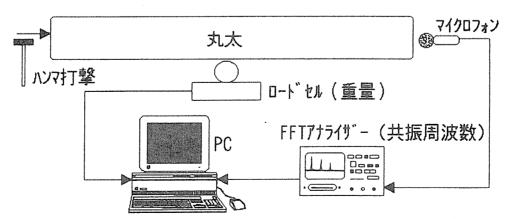
mr 1	3 m m-	11 22		77.20			ミナの調査		TOESE!	.,		B4 1 -			1	
番号	種類	Na*1	JAS 等級*5	比重	平均 含水率%	新経 全長	比(%) 中央	MAX	MGFSE(tf	/cni)*2 AVG	Ef	髓*3 有無	年翰*4		水率 (%)	
117	FJ全層	36.3	守級 3	0.535	12.7	18.6	10.3	123.8	112.5	118.6	120.4	1月無	幅 1	測定1	測定 2 10.0	測定3 12.
118	FJ全層	37.1	4	0.566	11.7	37.3	37.3	121.1	110.1	116.6	118.0	3			12.0	10.
119	FJ全層	37.2	4	0.478	6.8	20.1	20.1	102.5	66.5	87.0	85.8	1	2		7.0	6.5
120	FJ全層	37.3	4	0.457	7.5	33.9	14.9	122.2	106.6	117.1	119.9	3	1	7.0	8.0	7.5
121	FJ全層	38.1	2	0.615	16.0	20.9	20.9	123.3	110.3	116.0	117.4	3	1		15.0	17.
122	FJ全層	38.2	4	0.488	11.7	33.9	17.9	87.2	83.4	85.3	79.4	2	1	_	12.5	10.5
123	FJ全層	38.3	3	0.514	10.3	30.1	25.2	124.3	108.1	116.3	117.0	3	1		9.5	10.0
124 125	FJ全層 FJ全層	39.1 39.2	3 4	0.455 0.449	8.2 8.3	10.2	10.2	119.5	107.4	113.8	117.3	3	2		10.0	8.5
	FJ全層	39.3	4	0.540	13.2	24.8 38.5	24.8 21.5	88.5 121.3	77.2 106.3	83.4 114.6	80.1 120.6	2	2		8.5	10.0
127	FJ全層	40.1	1	0.514	11.5	10.2	10.2	119.2	100.3	113.1	118.4	3	1		12.5 13.0	12.0 10.5
128	FJ全層	40.2	4	0.394	6.0	26.1	26.1	86.4	77.0	83.1	82.8	1	2		6.0	5.0
129	FJ全層	40.3	2	0.483	10.3	22.9	9.6	116.8	108.4	112.9	110.6	3	1		11.0	10.5
130	FJ全層	41.1	3	0.459	10.8	26.0	26.0	115.5	105.2	111.3	116.6	3	2		11.0	10.0
131	FJ全層	41.2	4	0.420	8.8	34.4	34.4	85.3	75.6	80.7	82.4	2	1	7.5	7.5	11.5
	FJ全層	41.3	2	0.585	18.5	17.9	17.9	113.8	107.9	111.0	107.7	3	1	20.0	19.0	16.5
133	FJ全層	42.1	4	0.498	9.2	29.8	29.8	112.2	104.6	109.3	106.9	2	1	10.0	7.5	10.0
	FJ全層	42.2	4	0.421	9.8	35.0	35.0	81.5	74.5	77.6	75.2	2	2		9.0	10.0
	FJ全層	42.3	3	0.478	10.5	29.3	29.3	115.1	101.7	108.6	109.8	3	1		11.5	10.0
136 137	FJ全層 FJ全層	43.1 43.2	4 4	0.507 0.429	10.2 6.8	40.0 24.6	40.0	120.5	89.1	107.0	105.3	3	1		8.5	11.0
	FJ全層	43.2	4	0.429	7.7	32.1	24.6 32.1	74.8 113.0	70.0 98.7	72.5 107.3	69.5	1	2		7.0	7.5
139	FJ全層	44.1	5	0.501	8.8	51.2	51.2	121.1	92.3	107.3	116.5 120.7	1 2	2 2	8.5 8.5	7.0 9.5	7.5 8.5
140	FJ全層	44.2	4	0.417	9.2	44.2	44.2	77.7	65.3	72.2	70.1	1	1		10.0	9.0
141	FJ全層	44.3	3	0.513	12.8	30.7	20.2	109.8	96.9	106.1	105.3	3	2		12.5	12.0
142	無FJ	45.1	1	0.604	18.2	10.2	0.0	158.5	151.5	155.8	171.7	3	1		17.5	18.0
143	無FJ	45.2	3	0.435	9.7	20.9	20.9	104.1	100.1	101.9	103.1	3	2	9.0	12.0	8.0
144	無FJ	45.3	1	0.584	14.0	12.4	6.2	162.6	147.2	155.8	181.7	3	1	14.0	14.5	13.5
145	無FJ	46.1	3	0.595	14.7	30.3	14.1	160.6	143.7	153.6	164.6	3	1	17.0	15.5	11.5
46	無FJ	46.2	3	0.498	11.3	24.2	24.2	108.7	97.7	101.1	96.2	3	2		9.5	14.0
147 148	無FJ 無FJ	46.3 47.1	2 3	0.573	11.7	17.2	17.2	158.5	148.2	153.9	170.2	3	1	13.0	10.5	11.5
149	無F」	47.1	3 4	0.494 0.429	9.2 7.5	25.4 8.0	22.5 8.0	145.9 100.4	128.9 93.4	138.3 97.2	151.9 95.8	3 1	1	9.0	10.0	8.5
150	無FJ	47.3	4	0.549	10.5	42.3	42.3	145.4	131.3	138.2	152.5	3	1	8.0 11.0	6.0 9.5	8.5 11.0
151	無FJ	48.1	i	0.522	10.2	12.1	12.1	139.9	128.1	133.8	132.8	3	1	11.5	9.0	10.0
152	無FJ	48.2	3	0.441	9.3	12.0	12.0	104.4	89.4	96.7	93.0	3	2	11.5	9.5	7.0
153	無FJ	48.3	4	0.553	11.5	36.0	36.0	148.2	116.8	134.4	149.2	3	1	12.5	12.5	9.5
154	無FJ	49.1	3	0.500	8.7	26.4	26.4	132.7	119.8	126.9	134.0	3	1	9.0	9.0	8.0
155	無FJ	49.2	2	0.439	8.7	22.8	22.8	98.2	90.7	94.4	92.1	3	1	10.5	8.5	7.0
156 157	無FJ	49.3 50.1	1	0.547 0.522	13.3	11.0	11.0	132.7	124.0	127.2	136.8	3	1	14.5	14.0	11.5
158	無FJ 無FJ	50.2	4 4	0.322	10.8 9.7	20.1 37.6	8.0 37.6	133.2 96.9	118.1 87.4	125.3	128.6	2	1	12.0	10.5	10.0
59	無FJ	50.2	2	0.480	11.7	15.1	15.1	130.5	120.0	92.0 125.6	93.3 133.2	3	1	10.0 11.5	10.0	9.0
160	無FJ	51.1	2	0.515	11.8	23.3	18.1	123.8	111.1	118.7	120.6	3	1	13.0	11.0 12.0	12.5 10.5
61	無FJ	51.2	4	0.465	6.7	29.8	7.9	105.5	72.4	89.1	126.1	2	1	6.5	7.5	6.0
162	無FJ	51.3	1	0.509	12.3	10.2	10.2	125.1	114.9	120.1	124.1	3	1	12.0	12.5	12.5
163	無FJ	52.1	5	0.530	11.8	51.0	51.0	123.5	113.0	117.7	121.9	3	1	13.0	11.5	11.0
164	無FJ	52.2	4	0.437	8.5	40.1	40.1	96.6	77.7	87.6	91.5	3	2	9.0	9.5	7.0
165	無F」	52.3	3	0.530	10.2	27.0	18.7	124.6	107.9	117.8	124.6	3	2	9.5	10.5	10.5
166	無FJ	53.1	3	0.533	11.5	14.0	8.2	120.8	106.3	113.4	112.7	3	2	13.5	11.0	10.0
167	無FJ 4#Fl	53.2	3	0.388	7.2	19.9	9.9	89.6	78.3	83.4	84.1	3	2	6.0	8.0	7.5
168 169	無FJ 無FJ	53.3 54.1	1 5	0.477 0.559	10.8 9.5	8.0 67.3	8.0 67.3	116.0 118.7	108.4 106.3	113.4 111.9	121.8 111.0	3	1	11.5	10.5	10.5
170	無FJ	54.2	4	0.333	9.0	47.1	47.1	89.1	70.0	81.0	85.2	3 2	2 2	10.0 9.0	9.0 9.5	9.5
71	無FJ	54.3	4	0.442	7.3	39.3	16.2	118.7	101.2	112.2	119.2	3	1	7.0	9.5 7.5	8.5 7.5
172	無FJ	55.1	3	0.511	10.8	32.9	18.5	112.2	98.7	107.0	111.3	3	1	12.0	11.0	9.5
73	無FJ	55.2	3	0.463	12.0	30.0	0.0	75.6	63.8	72.2	70.8	3	2	14.5	11.5	10.0
74	無FJ	55.3	4	0.564	14.7	34.5	11.4	109.8	101.7	106.6	107.5	3	1	16.0	16.0	12.0
; MGF ; 髄の ; 年輪	SEはMAX, 有無;芯持	LOW,AV(身を1、芯 咳じで平均	Gを配載し 付2、芯ま	た。ラミ: 5り3で表え	、少数部分が ナの組み合え ました。。 るもの2、誰	せはAV(Gによった	す。m1か 。	らm9は曲	げ試験用	Jラミナ					

付表 3層集成材曲げ破壊試験結果等

				曲げ破壊	試験	刊衣 3	個集成が 弱軸曲げ	a sa magamatan kan kapang ngada yang	基本振動	55	ナからのエ	理論値	175+3	枚の平均値	à
種類	No.	比重	MOR	MOP	MOE	MOEm	MOEss	MOEm弱	Ef	RLElow	RLEavo	RLEf		LEavg,avg	
			kgf/cmi	kgf/cmi		tf/cni	tf/cmi	tf/cni	tf/cmi	tf/cmi	tf/cmi	tf/cmi	tf/cmi	tf/cm	tf/cmi
FJ内層	1	0.560	415	396	157.2	164.8	142.1	150.4	155.0	156.2	163.2	180.2	139.1	145.1	158.7
FJ内層	3	0.531	665	463	141.2	146.1	139.2	142.0	147.8	141.8	146.7	164.0		·	154.3
FJ内層	5	0.505	534	350	127.7	133.7	120.7	124.3	126.3	131.6	138.0	147.0	119.7	125.8	132.0
FJ内層	7	0.564	376	234	108.8	113.8		110.5	115.4	125.2	129.7	132.6	114.8	119.2	120.9
FJ内層	9	0.542	403	303	113.9	122.5	107.2	119.7	111.2	115.4	126.7	128.4	108.0	116.9	117.2
FJ内層	11	0.495	403	232	108.1	110.3	111.9	118.0	114.3	114.4	122.9	122.5	104.6	113.3	115.7
FJ内層	13	0.498	396	281	113.4	130.1	108.5	116.7	117.0	112.8	121.2	130.5	103.3	111.4	117.3
FJ内層	15	0.479	345	210	90.5	94.5	90.4	94.8	95.2	107.7	115.4	109.6	100.5	106.4	102.5
FJ内層	17	0.521	430	306	106.2	126.5	104.0	106.5	109.1	105.4	113.8	120.7	97.1	104.7	109.8
FJ内層	19	0.485	368	256	92.9	97.5	90.0	94.3	94.9		109.6	111.9	94.4	100.5	100.7
FJ内層	21	0.485	434	257	90.0	97.5	89.6	90.2	89.3	99.8	106.5	105.5	88.7	96.4	94.1
FJ全層	23	0.535	462	349	148.9	163.6	144.4	162.7	150.9	148.5	156.6	175.1	128.6	139.9	157.2
FJ全層	25	0.556	442	303	139.1	149.3	134.7	124.0	141.8	139.3	149.0	167.5	125.9	134.3	147.8
FJ全層	27	0.539	379	234	122.3	124.8	118.2	124.2	126.1	128.6	137.4	145.6	117.1	125.2	131.8
FJ全層	29	0.530	368	281	110.5	119.2	115.4	122.9	118.5	122.7	130.8	139.2	113.5	120.2	125.0
FJ全層	31	0.490	392	281	121.4	136.9	113.1	115.3	117.4	114.8	126.3	134.7	107.5	116.5	123.0
FJ全層	33	0.510	460	329	111.5	114.9		120.7	115.6	118.5	124.0	127.9	103.9	114.1	119.3
FJ全層	35	0.551	293	211	106.9	121.3		103.2	112.5	109.3	120.4	129.2	102.4	110.8	116.5
FJ全層	37	0.505	383	257	98.0	96.4		90.3	108.6	106.8	115.8	117.7	94.4	106.9	107.8
FJ全層	39	0.489	309	232	103.9	112.5					113.1	117.5	97.0	103.9	106.0
FJ全層	41	0.486	364	211	94.0	96.0	<u></u>	93.1	98.4	105.4	110.0	111.1	96.2	101.0	102.2
FJ全層	43	0.479	326	210	92.9	102.9	89.2	97.4	92.0	93.0	105.9	109.4	85.9	95.6	97.1
無FJ	45	0.537	685	396	153.1	157.6		150.6		147.5	153.8	174.0	132.9	137.9	152.2
無FJ	46	0.562	514	306	145.9	145.2		127.2	140.5		151.8	164.7	129.9	136.2	143.6
無FJ	47	0.499	527	349	128.4	132.9		131.3	127.7	128.7	136.7	150.1	117.9	124.6	133.4
無FJ	48	0.507	499	302	118.7	133.5	114.4	120.5	123.0	121.2	132.7	139.2	111.4	121.6	125.0
無FJ	49	0.489	349	208	107.4	111.3	108.1	114.9	113.6	120.7	125.8	133.8	111.5	116.2	120.9
無FJ	50	0.485	441	234	110.9	109.9	110.5	114.8			124,2	129.5	108.5	114.3	118.4
無FJ	51	0.497	560	280	106.8	107.6	117.8	119.8	117.6	111.5	118.3	122.5	99.5	109.3	123.6
無FJ	52		350	209	105.0		102.1	110.5	109.0	109.2	116.7	122.			112.7
·無FJ	53	0.465	397	279	94.5	95.7	100.1	98.4	104.6	106.3	112.3	116.0	97.7	103.4	106.2
無FJ	54	0.487	222	140	92.5	97.5	98.2	99.3	100.2	102.5	110.9	114.0	92.5	101.7	105.1
無FJ	55	0.515	380	210	93.3	104.8	89.6	96.3	91.5	98.8	105.5	108.0	88.0	95.3	

2.2 静岡県産スギによる3層集成材の製造と曲げ試験

2.2.1 はじめに


現行の日本農林規格(以下JASと記す)における構造用集成材の積層数は4または5以上であることが規定されている。そのため、ひき板2枚もしくは3枚を積層接着した材料は集成材として認められず、構造材料としての信頼性を得るには認定・評定(建築基準法第38条)等を取らなければならなかった。しかし、昨年度から構造用集成材のJAS改正案が検討されており、3層の積層材も構造用集成材として認定される方向にある。ただし、3層構造用集成材(以下3層集成材と記す)に関する強度性能や寸法安定性能あるいはひき板の乾燥効率等のデータ(特に国産の針葉樹について)は皆無であり早急な対応が必要になっている。また、静岡県においては、戦後植裁されたスギ人工林が伐期を迎えつつあり、それらを有効活用するための新たな製品開発や技術手法の開発が早急の課題となっている。

そのため、本試験では宮崎県産スギを用いた3層集成材の曲げ強度性能について実大実験による検討を行った。また、それら3層集成材の部材料である縦継ぎ(フィンガージョイント)ラミナの曲げ試験も併せて実施した。

2.2.2 集成材の製造過程およびその過程における調査・試験

(1) 集成材製造用原木丸太およびその材質調査

3層集成材の製造原料は静岡県春野町産のスギ中目丸太30本とした。それらの元日および末口の直径、年輪数、平均年輪幅を目視により計測した。体積と重量計測によるみかけの比重とFFTアナライザーで計測した共振周波数により動的ヤング係数を算出した(図-1参照)。

動的ヤング係数 = <u>比重 × (長さ × 共振周波数)</u>2 重力加速度

図-1 動的ヤング係数の計測手法

それらの調査結果を表-1に示す。元日における年数は29~69、平均48、動的ヤング係数(tonf/cm²)は45~130、平均86であり、いずれもバラツキが大きい。市場等で丸太を購入した場合、丸太の段階で材質面に大きなバラツキが現れるのが現状と思われる。そのため、スギによる効率的な集成材製造を行うためには丸太の段階での区分およびそのシステム化が必要と思われる。

	夜一1	り信木ル	机们被此	1/11/2/1	人人人们多	1 /		
	直:	径	年輔	数	年 輔	輪幅	みかけの	動的
	元口	末口	元口	末口	元口	末口	密度	ヤング係数
	(с	m)			(m	ım)	(g/cm3)	(tonf/cm³)
平均値	37.3	32. 1	48	41	4.00	4. 10	0.719	85.8
変動係数(%)	15.0	14. 3	20	21	2.69	2. 31	16.3	21.8
最大	50.4	45. 8	69	59	7.70	7. 00	0.943	129.8
最小	29.7	27. 0	29	25	2.70	2. 40	0.424	45.4

表-1 3層集成材製造用スギ丸太材質データ

(2) ひき板の製材および人工乾燥

供試丸太より幅115mm、厚さ40mm、長さ4mのひき板を製材した。製材したひき板は目標含水率を12%に設定し、楽器製造メーカーにおいて蒸気式人工乾燥を行った。乾燥に要した日数は12日間であった。乾燥が終了したひき板は4面モルダーにより表面平滑処理を行い、幅10.5cm、厚さ3.7cmの集成材製造用のラミナに仕上げた。その際、含水率計(モコ HM-520 ケット科学研究所(株)))により含水率が12%±2%であることを確認し、含水率が目標含水率より著しく高いものは再乾燥を行った。本試験ではラミナの人工乾燥に関する各種データを計測しなかったが、今後、乾燥速度や人工乾燥コスト、寸法変動(狂い)等に関してデータを集積する事が必要であろう。

(3) 集成材ラミナのヤング係数計測用グレーディングマシン 図-2にラミナのヤング係数(以下MOEと記す)の計測に用いたグレーディングマシンの構成を示す。

測定原理は、元たわみ等が計測値に及ぼす影響を減らすため、ラミナに対して一定量のたわみ δ 1および δ 2を与えて(δ 1 < δ 2)それぞれの反力をロードセルで計測しMOEを算出する仕組みになっている。モニターにはMOEの平均値と最小値が表示される。以下にグレーディングマシンの主な仕様を示す。

現在、改正が検討中の"構造用集成材のJAS"では、グレーディングマシン等によるヤング係数でラミナを等級区分することを重点においた規格になるようである。そのため、集成材の製造におけるグレーディングマシンの必要性は今後より高まると思われる。

機種名 MGFE-251 飯田工業株式会社

① 測定可能な材料寸法 材厚 20~40mm

材幅 100~250mm

材長 2500mm以上 必要

- ② 送材速度 66m/min (60Hz時), 56m/min (50Hz)インバーターにより送材速度の変更が可能
- ③ 測定間隔(サンプリングピッチ) 最小50mm以上で任意に設定が可能
- ④ 等級区分数は5.5色のスタンプローラーにより表示
- ⑤ オプションとして計測されたMOEデータのパソコンへの転送が可能

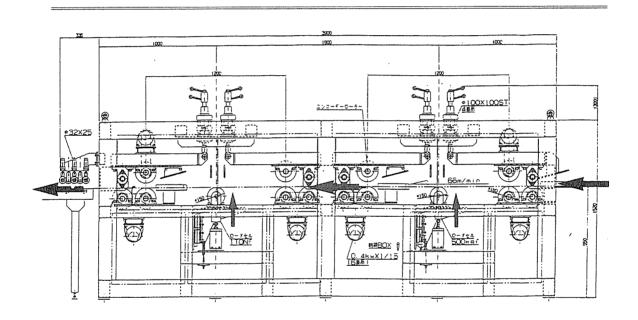


図-2 グレーディングマシンの概要

(4) ラミナの材質調査およびMOE調査

「人工乾燥および表面平滑処理の終了したラミナについて、「構造用集成材の製造基準」 (以下製造基準と記す) に準じて、視覚的に"腐れ"、"割れ"の欠点調査を行った。

その結果、図-3に示した位置に2等を越える欠点を有したものは3層集成材の製造材料から除いた。さらに、人工乾燥による曲がり、ねじり等の狂いが発生したものや、丸身が著しいひき板は試験体から除外した。

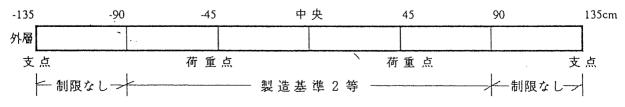


図-3 位置による欠点の制限

それらのラミナの高周波式含水率計を用いて含水率を材面3ヶ所で計測した。また、ラミナの最大節径比および集中節径比を計測した。

本試験が実施された集成材工場の製造システムでは、フィンガージョイント(縦継ぎ)ラミナ作成後またはラミナ仕組み後におけるMOE計測が不可能である。そのため、縦継ぎを行う前にラミナ全数のMOEをグレーディングマシンを用いて計測した。なお、グレーディングマシンは工場に納入された直後であったため、樹種や断面寸法に対する補正係数が明確でなかった。そのため、グレーディングマシンに補正係数を入れずに計測した値と静的死荷重負荷(スパン360cm、中央集中荷重方式)により計測したMOEとの相関分析を行い、補正係数を算出した。

図ー4にラミナのMOEについて、グレーディングマシンの平均値、最小値(補正係数で調整した値)と静的死荷重負荷による値との関係を示す。両者の相関関係について、決定係数をみると、グレーディングマシンの最小値では0.79、平均値では0.81であった。それらの値を既存のデータと比較すると相関関係はやや低い結果となった。その原因は明確でないが、静的死荷重による計測値に元たわみ等の影響が含まれやや問題点があったことと、ラミナの断面寸法にややバラツキがあったがグレーディングマシンではそれらを同一な値で算出したことによると推定される。

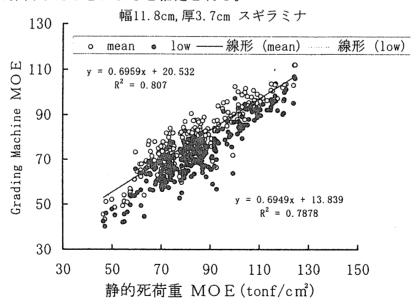
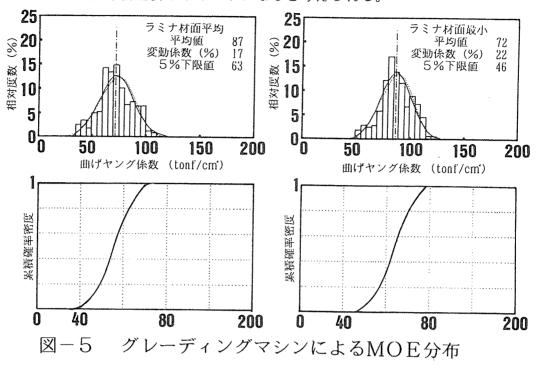



図-4 グレーディングマシンと静的死荷重によるMOEの関係

図-5にグレーディングマシンによるMOEのヒストグラムを示す。ラミナ材面の全体 平均によるMOE $(tonf/cm^2)$ は、その平均値は87、変動係数が17%であった。また、 最小値は平均値よりも約20%小さくなり、変動係数もやや大きい。

ラミナ材面の全体平均のMOEを表-1に示した丸太の動的ヤング係数のそれらと比較するとほぼ近似する結果となった。そのため、乾燥後におけるラミナのMOE分布は丸太の動的ヤング係数分布より推定できると思われる。このことは、集成材製造において効率

的な生産を図る上で、今後重要なポイントになると考えられる。

グレーディングマシンによるMOE (平均値)で機械等級区分を行い、等級はA~Eの 5とした。表-2にその結果を示す。

表-2 MOEによるラミナの等級区分

	MOE区分基準	度数 比率	(%)
Α	9 0 ≧ A	139	40
В	$8.0 \le B < 9.0$	107	31
С	$7.0 \le C < 8.0$	62	18
₂ D	$6.0 \le D < 7.0$	19	6
E	E < 6.0	17	5
計		344	100

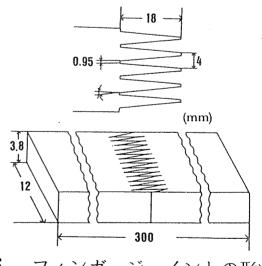
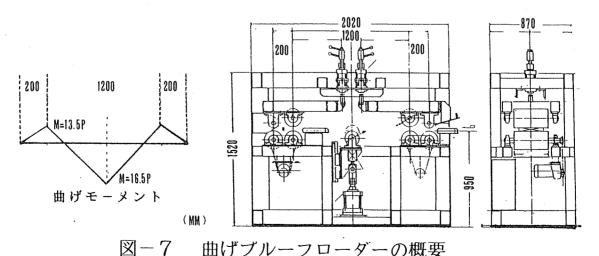


図-6 フィンガージョイントの形状

(5) フィンガージョイントによる縦継ぎラミナ (FJラミナ) の作成 ラミナの一部は長さ方向の中央付近にフィンガージョイントの縦継ぎを有するラミナ (以下FJラミナと記す) に加工した。フィンガージョイントによるラミナの縦継ぎは表


-2に示した同一等級のものを接合した。フィンガージョイントを行う際、フィンガー加工する木口部分から10 c m以内に存在する節は切除した。F J ラミナの作製に用いたフィンガージョイントの形状および寸法を図-6 に示す。フィンガー長は19 mm、フィンガーの接合形式は垂直型とした。フィンガー加工した材の接合は、最近、縦継ぎ接合用として開発されたハネムーン型接着剤(λ - Λ °- τ °- τ 7 η - η DF-1000 大鹿振興(株))を用いた。接着剤主剤および硬化剤の性状を以下に示す。

		10000		
	接着剂主剂	液状硬化剤		
粘度	1. 8 P a	0. 95Pa	(25℃)	
比重	1.198	1.082		
РН	10.3	8.03		

フィンガー片面にレゾルシノール樹脂主剤、片面にホルムアルデヒド液状硬化剤を塗布した後、圧力60kgf/c㎡で圧締した。用いた接着剤は、仕様によれば接着圧締後における養生期間は6時間であり、従来の接着剤のそれに比べて短時間であることが特徴であった。しかし、製造現場におけるデータが必ずしも明確になっていないため、本試験では養生期間を5日間とした。

(6) F J ラミナの保証荷重試験

養生したFJラミナに対して保証荷重試験を行った。保証荷重試験は製造ラインに導入されている曲げプルーフローダー(PLH-250 飯田工業(株))を用いて行った。図-7に曲げプルーフローダーの概略を示す。FJラミナに負荷する保証荷重の応力値は木質構造計算基準・同解説(日本建築学会)に示される構造用集成材の短期許容応力度(B2類、2級、繊維方向)190kg f / c m とした。その結果、製造したFJラミナの全てが保証荷重試験に合格した。

-25-

昨今、新しい接着剤やフィンガージョイントが開発されている反面、FJラミナの性能 やそれらにより製造される集成材の強度性能に信頼性で問題のあることが報告されている。 そのため、現行のJASでは保証荷重試験の導入が行われていないが、今後、FJラミ ナに対する保証荷重試験の重要性・必要性はより高まると思われる。

(7) F J ラミナの曲げ強度試験

FJラミナの曲げ試験体は、作成したFJラミナの中から、MOEにより5等級よりそ れぞれ4枚ずつ合計20枚を無作為に選んだ。曲げ試験は、万能材料試験機(オートグラ フ AG5000B 島津製作所(株))を用いて、スパン90cm、3等分点4点荷重 方式で行った。その結果を表ー3に示す。材質および曲げ強度間の相関分析を行った。そ の結果を表-4に示す。曲げ強度と相関関係が認められたのは、年輪幅および縦振動法に よる動的ヤング係数および曲げヤング係数であり、節径比との相関は認められなかった。 試験体は、全てフィンガージョイントで破壊が起こったが、全てが塑性域で破壊した。

図-8にFJラミナのMOEと曲げ強度(MOR)との関係を示す。

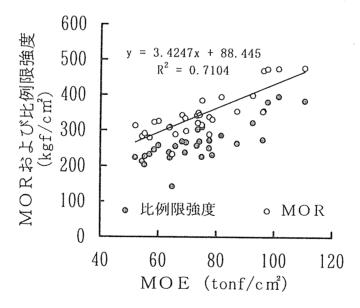


図-8 FJラミナのMOEとMORとの関係

(8) 3層集成材の製造およびその曲げ強度試験

図-9に製造する3層集成材の概要を示した。(Aタイプ)全層のひき板中央1/3区間 にFJの縦継ぎがあるもの、(Bタイプ)中間層のひき板の中央1/3区間にFJの縦継ぎが あるもの、(Cタイプ)全層のひき板に縦継ぎが無い3タイプとした。それらは、予め等価断 面計算により積層材のヤング係数を予測し、外層に上位等級(A等級、B等級)のひき板

表-3 FJラミナの曲げ試験結果

No	幅	厚	年輪幅	密度	節径 最大	比 集中	縦振動注 MO	曲げ E	比例限 強度	曲げ 強度
	(cm)	(cm)	(mm)	(g/cm3)	(%)		(tonf/		(kgf/	
1		3.7	8. 3	0. 397	21	25	58	52	225	312
2		3. 7	8.3	0.386	11	18	59	55	228	285
3		3.8	8.4	0.414	17	14	60	54	213	283
4		3.8	8. 3	0.385	13	33	60	55	204	291
5		3. 7	6. 2	0.415	29	41	66	57	234	279
ϵ		3. 7	5. 0	0.357	12	21	66	60	259	325
7		3.8	5. 0	0.393	15	34	67	58	246	322
8		3.8	6.3	0.469	13	17	69	64	224	309
G		3.8	5.8	0.398	9	18	72	69	267	298
10		3. 7	4.7	0.375	24	0	72	66	256	289
11		3.8	5. 1	0.437	12	17	72	64	239	307
12		3.8	4. 2	0.365	10	0	75	68	269	342
13		3. 7	5.3	0. 325	7	0	76	69	239	334
14		3.8	0.0	0.415	34	24	77	65	143	233
15		3. 7	4. 1	0.442	26	51	78	75	227	315
16		3. 7	4.4	0.434	27	0	79	73	302	320
17		3. 7	4.4	0.416	21	25	81	75	309	384
18		3.8	4.0	0.384	13	0		73	257	341
19		3. 7	5. 7	0.427	17	21	82	77	251	337
20		3. 7	5. 3	0.415	18	25	84	74		350
21		3.8	3. 0	0.403	13	28	87	82	286	394
22		3.8	4. 2	0.393	17	18	87	79	232	329
23		3.8	3. 6	0. 382	17	19		78	272	289
24		3. 7	3. 6	0.447	19	0	91	87	264	354
25		3. 7	2. 9	0.412	9	0	99	93	322	399
26		3. 7	2.8	0.447	17	38	101	96	355	469
27		3. 7	3. 1	0.449	35	13	103	101	396	475
28		3. 7	3.6	0.423	8	21	111	105	381	474
29		3.8	3. 2	0.440	9	0		106	274	352
30	****************************	3. 7	3. 7	0.405	0	0		110	383	477
平均	11.8	3.8	4.8	0.408	16	17	81	75	269	342
標準偏差		0.0	1. 9	0.031	8	14		17	57	63
変動係数	1. 2	0. 7	39.8	7. 678	49	81	20	22	21	18

表-4	FJラミナ	の曲げ強	i度と材質。	との相関?	分析結果			
	年輪幅	密度	節征 最大	圣比 集中	縦振動法 MC	曲げ DE	比例限 強度	曲げ 強度
年輪幅	_							
密度	NS							
節径比 最大	· NS	NS	_					
節径比 集中	NS	NS	NS	_				
縦振動法 MOE	**	NS	NS	NS	-			
曲げ MOE	**	*	NS	NS	**	-		
比例限 強度	NS	NS	NS	NS	**	**	-	
曲げ強度	*	NS	NS	NS	**	**	**	

を、中間層に下位等級 (C等級, D等級) のひき板を配置した。各集成材に用いたラミナの構成 (MOE、集中節径比、含水率)を表-5に示す。

ひき板の接着はレゾルシノール樹脂接着剤(ディアノール 大鹿振興(株))をロールコーターで塗布した後クランプで圧縮・養生(蒸気により加湿・保温)した。ラミナ相互の圧締圧力は 8 k g f / c m とした。養生後、4面モルダーにより表面平滑処理により、断面寸法幅 1 0 . 5 c m 、厚さ 1 0 . 4 c m に仕上げた。

製造本数はAタイプとBタイプが各20体、Cタイプ10体であった。それらは縦振動法により動的ヤング係数を計測し、その値によりAタイプ、Bタイプは区分後のヤング係数がほぼ等しくなるようにそれぞれ10体ずつ2分した。2分したAタイプとBタイプはそれぞれ垂直型および水平型の曲げ試験体とした。またCタイプは水平型の曲げ試験体とした(図-9参照)。曲げ試験は実大試験機(島津製作所(株))を用いてスパン270 cm、3等分点荷重方式で行った。

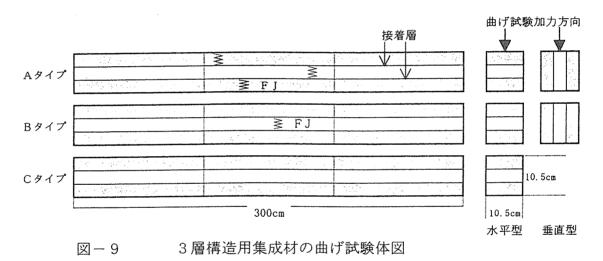


表-6に3層集成材の曲げ試験結果を示す。図-10に同じく曲げヤング係数と曲げ強度との関係を示す。

曲げヤング係数の実験値は、予め集成材を構成するラミナのヤング係数から等価断面により計算した値とほぼ近似した。それらの実験値は $5.3 \sim 1.0.5$ tonf/cm²となり、Cタイプ水平型の1体を除いて(FJラミナの仕組みにおけるミス)構造用集成材のJAS2級基準値7.0 tonf/cm²を上回った。

各タイプの曲げ強度の平均値は、AタイプがJAS1級を、BタイプおよびCタイプが JAS特級の基準値を上回った。同じく最小値は、AタイプおよびBタイプがJAS2級 を、CタイプがJAS特級の基準値をそれぞれ上回った。

これらは、ラミナの機械等級区分と等価断面計算により、MOEの大きなラミナを外層に、小さなラミナを中間層に積層したことによると考えられる。

表-6 3層集成材 曲げ試験結果

	No	試験 タイプ	Ψä	厚	縦振動 MOE	曲げ試験 MOE	曲げ 強度	比例限 _	比例限 MOR	比重	M, C
			(cm)	(cm)	(tonf	/cm²)	(kgf/		(強度比)		(%)
Aタイプ	l	曲げ垂直		10.46	73. 1	72.2	304	253	0.83	0.348	15
Aタイプ	9	曲げ垂直		10.39	85.4	88.6	439	328	0.75	0.388	12
Aタイプ	10	曲げ垂直		10.34	89. 2		300	257	0.86	0.390	12
Aタイプ	15	曲げ垂直		10.36	80.6	80.5	454	306	0.67	0.385	13
Aタイプ	16	曲げ垂直		10.38	99. 3		355	253	0.71	0.388	14
Aタイプ	2	曲げ水平		10.37	84.3		365	242	0.66	0.377	12
Aタイプ	3	曲げ水平		10.36	86. 9	84.9	438	289	0.66	0.401	22
Aタイプ	5	曲げ水平		10.44	113.0		597	354	0.59	0.412	15
Aタイプ	12	曲げ水平		10.39	68.5		381	255	0.67	0.371	19
Aタイプ	20	曲げ水平		10.36	86.5		448	334	0.75	0.361	12 12
Bタイプ	ļ	曲げ垂直		10.38	94.8		411	266	0.65	0.433	12 16
Bタイプ	5	曲げ垂直		10.36	79.0		414	302	0. 73 0. 65	0. 436 0. 423	13
Bタイプ	10	曲げ垂直		10.38	104.1	109.3	566	369	0.63	0. 423	13
Bタイプ	11	曲げ垂直		10.34	105.9		521	317 298	0. 81	0. 424	11
Bタイプ	16	曲げ垂直		10. 35	84. 7 98. 8		353 689	328	0. 48	0. 429	11
Bタイプ Bタイプ		曲げ水平 曲げ水平		10.30			491	328	0.40	0. 423	10
Bタイプ Bタイプ	3 9	曲げ水平		10. 36	113. 7 90. 3		449	292	0.65	0.403	10
Bタイプ Bタイプ	9 14	曲げ水平		10.38	87. 5		295	160	0. 53	0.457	14
Bタイプ	19	曲げ水平		10. 36	83.6		414	375	0. 91	0. 432	10
Cタイプ	1 J	川げ水平		10. 37	84.7		405	236	0.51	0. 395	12
Cタイプ	2	曲げ水平		10. 43	69.0		497	287	0.58	0.384	16
Cタイプ	3	曲げ水平		10.36	86.3		550	409	0.74	0.377	13
Cタイプ	6	曲げ水平		10. 43	93.3		571	402	0.70	0.393	11
Cタイプ	8	曲げ水平		10. 39	117.0		465	327	0.70	0. 437	11
		111117 /24 1	10.00	10.00	711.0		100				
Aタイプ	全層F	`Jラミナ	沙区	-J	85. 5	86.0	371	279	0.76	0.380	13
			最人	<u>.</u> .	99.3		454	328	0.86	0.390	15
	Ì	垂直型	最才	Υ	73. 1	72.2	300	253	0.67	0.348	12
			変動係数	发(%)	11	13	20	13	10.27	4.697	10
Aタイプ	全層F	`Jラミナ	平均	.J	87.8		446	295	0. 67	0.384	16
			最人	Ç	113.0		597	354	0.75	0.412	22
	7	水平型	最小		68. 5		365	242	0.59	0.361	12
***************************************			変動係数		18		21	16	8.17	5. 502	28
Bタイプ	中間層	FJラミナ	拉拉		93.7	97.6	453	310	0.70	0. 429	13
			最人		105.9	111.8	566	369	0.84	0. 436	16
	Ī	垂直型			79.0		353	266	0.61	0. 423	11
			変動係数		13		19	12	13. 45	1.355	16
Bタイプ	中中間層	FJラミナ	拉拉		94.8		468	297	0.65	0.426	11
		117 160	最大		113.7		689	375	0.91	0.452	14
	,	水平型	最小		83.6		295	160	0.48	0.407	10
O 5 1 - 9	A 1003	T Y \ 1	変動係数		13		31	28	25.31	4.361	16 13
Cタイプ	全僧的	11 フミナ	(4.7) 大社		90.0		497	332	0.66	0.397	
		J. 37 101	最力		117.0		571	409	0.74	0.437	16
	į	水平型	最小のまれてメ		69.0		405	236 22	0.58 11.58	0. 377 5. 831	11 16
		•	変動係数	X (%)	19	20	13	۵۵	11.08	0.001	10

集成材タイプ別の曲げ強度の平均値を水平型で比較するとCタイプ>Bタイプ>Aタイプの順になった。特にAタイプの大半は引張側のFJ部分より破壊が発生しており、FJを有することによる強度の低減が明確に表れた。しかし、曲げ試験時に弾性域内で破損した試験体は皆無であった。試験タイプ(水平型と垂直型)による曲げ強度の平均値を比較すると、Aタイプ、Bタイプともに水平型が垂直型よりも大きくなっている。しかし、変動係数は水平型が垂直型よりも大きい結果になった。

ただし、集成材タイプおよび試験タイプの違いよる曲げ強度の差異は、各試験体のMO Eや集中節径比等の試験体条件が異なることを考慮する必要があり、明確な結論付けはできない。

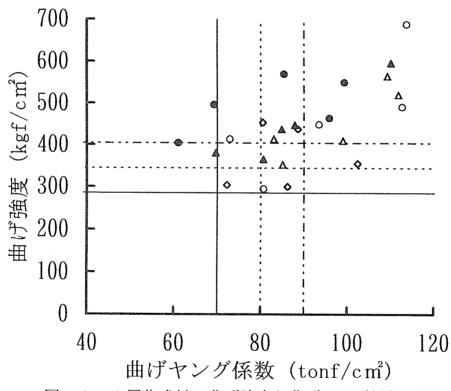


図-9 3層集成材の曲げ強度と曲げヤング係数の関係

2.2.3 おわりに

静岡県産のスギ丸太を用いて3層集成材を製造した。その過程で、丸太およびラミナの材質調査、FJラミナの曲げ試験、FJラミナの保証荷重試験、製造した3タイプの3層集成材の曲げ試験を行った。

各過程における調査および3層集成材の曲げ試験体のサンプル数は必ずしも十分な量ではなかった。また、各タイプ間の曲げ強度の差異を比較するには必ずしも適切な試験体では無かった。しかし、原料である丸太から採材されたラミナのMOE分布や、それらを用いて作成される3層集成材の曲げ強度性能が大まかに把握された。また、3層集成材の強度性能は現行のJASの基準値を上回ることが可能であった。

今後の課題としては、ラミナの歩留りと人工乾燥に関する問題点、製品コストを低減させるための効率良い製造システムの開発、在来軸組構法における柱材としての強度(座屈)性能の調査等を行っていく必要があろう。

また、近年シミュレーションによる集成材の強度予測モデルが提案されている。 3 層集成材の曲げ強度分布についても、ラミナの曲げ強度の統計・確率データによりシミュレーションで推定することが十分可能と思われる。

なお、本文中で記さなかったが、現在、実大曲げ試験を行った同数の試験体について、 狂い試験(寸法安定性)を実施している。その試験が終了した後、実大曲げ試験を予定し ている。

FJラミナ仕組野帳 Aタイプ 垂直型 付図-1

和 145cm
-
••••
\$ \$
~~~ ~~~

FJラミナ仕組野帳 Aタイプ 水平型 付図-2

1	ナート・エニントが研究所			#	100 c/ - U /- 1 F			
米及大	7 アリバナ 幸間め回			取入来中即位	即住に及びり位置			æa
—— 梅 吓	本中   XXXII 女点 MOE		匝	中 中	中面面面面面		K K	村端 位置
	(tonf/cm³)   135cm	т 90ст		45cm	45cm	90cm	135cm	
	29.			~~ ~~	(E) 12 (E	3)		外層
17FJ	St P2				1			五國
2	8%	······································	(6.5)	ww.	. 5.0			外層
1	. \$\$			78	~~ ~~			外層
F.	18 /9 18 /9			www.	3.2			五四
7)	88				25 8%			外層
[JL	901		<i>\$</i> 78					外層
-3	64 107			32	\$ 23			内層
	601		\$ 60	·				外層
1 11	7%			\$ 27	\$ 7 M			外層
7 / .	72 75				55 61			内層
\ \ \	76		2-2	www				外層
11.1	18		350		2.0			外層
2 2	* 12		25	13.2	47			公園
9	X		7.2 3.50		0.5			外層
								外層
								内層
								外層
( <del>Q</del> )[	2			0,200 \$				外層
· · · · · · · · · · · · · · · · · · ·	M			0.5	<b></b>			内層
	5			ჯ\ ე				外層

付図ー3 FJラミナ仕組野帳 Bタイプ 垂直型


45cm 90cm   2.5   2.8   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)   (.0)	(25) (20) \$
	3, x 2, 2, 2 3, x
7.2	3,5 K
	3,8
	3.4
	2.2
	%
-É	
(i.0) M-3.4	
(i.0) M-3.x	
Ø-3.≮	<b>~~</b> ~
*;*/	*3
· · ·	9.5 0.5
	w

付図-4 FJラミナ仕組野帳 Bタイプ 水平型

08	位置		外層	五國	外層	外層	力層	外層	外層	五圖	外層	外層	日層	外層	外層	四面	外層	外層	四國	外層	外層	内圖	外層
	拉																						
	łχ ₁űį́	135cm															•••••						
,		·												·						_			
																				•			
		90cm																					
												(23)	ما	(3)									
n(-	南面河			٠						2.9			-25-1										
二位署	1	45cm		143.5																			
径 比 及び 日 位	· }						m															w	
節径日	<del>   </del>									87/			1,5   }		222	2,8						0.5	
大無中意									3.0			<i>222</i>				~~	% 222				w	1 1	W
最大	# <b>⊞</b> 4 -10.€	45cm		m			14.3.K			~		7777	4,2			3.2					0,20		0 پ
	恒															<i>199</i>							
		(									(3.0)						, .						
	-	90cm									_												
			(\$)																				
	in:	135cm			(2.5)																		
断面	故材 支点:	13		10			20,			R			22			7%							
] 沙 等価	無成材 MOE	(tonf/cm	- AS	88	101	کھر	7/ 3/9	103	X	88	8-2	75.0	53	ಸ	3%	200	75					22	1-
集成村户、	中中		\			7W			$\dashv$						Ų		5			$\dashv$	1 2	"/	5
藥.	——		11	. '	7	12	. '	ן מ	17FN	<u> </u>	<u>}</u>	NYL		1//	NZL	`					<u>@</u>		

FJラミナ仕組野帳 Cタイプ 水平型 付図-5

45cm   135cm   135	集成社	J F J 73.7	集成材		最大集中節	集中節径比及びり位置			<b>B</b>
	曲巾巾				軍点	温			<b>村端</b> 位置
71		ton (tonf	/cm²) 135cm	90cm		45cm	90cm		
775									外層
7. 3x 3y 3x	7	99	7%			<u> </u>			中国
775 25 79	\	7%			(3.5)				外層
7/1/2		&			F6X				外層
7N		63	79		25				内層
7	8	79							外層
7M 26 100		901							外層
74		35	/o K					•••••	区圖
23 97 8.29 20 97 8.29 20 97 8.29 20 97 8.29 21 8.25 22 8.28 23 8.28 24 8.28 25 8.28 26 8.29 27 8.29 28 8.29 29 97 8.29 20 9.20 \$ 8.20 20 9.50 \$ 8.20 20 9.50 \$ 8.50 20 9.50 \$		103				:2222			外層
29       90       91       102       103       103       103       103       103       103       103       103       103       104       105       105       106       107       107       108       108       109       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100	4	43			X.E				外層
24 97	Z \ 	્સ	6/			67			内層
97       98       94       95       96       97       97       98       2       3       3       5       5	8	90			\$ 00 P				外層
103     97       96     97       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       103     103       104     103       105     103       105     103       105     103       105     103       105     103       105     103       105     103 <td></td> <td>97</td> <td></td> <td></td> <td></td> <td>125.00</td> <td></td> <td></td> <td>外層</td>		97				125.00			外層
2 3 3 5	Za	103	97						内層
2 3 5 6 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0	96				1.3			外層
3 0,20 \$									外層
3 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 8 0.5 8 0.5 8 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0.5 8 0									内層
33 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.0									外層
\$ 50 m	( <del>G</del> )]	7			w				外層
2		8							中国
		ړی			<i>ე</i> ((			•••••	外層



写真一1 3層集成材製造用スギ丸太

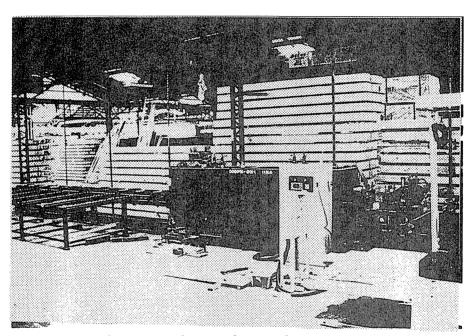



写真-2 グレーディングマシン

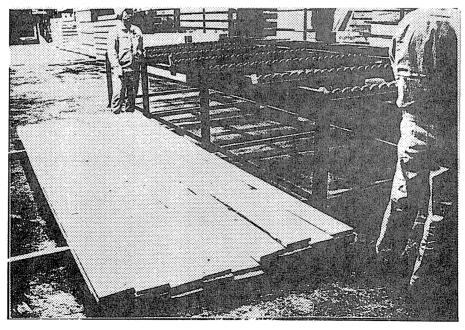
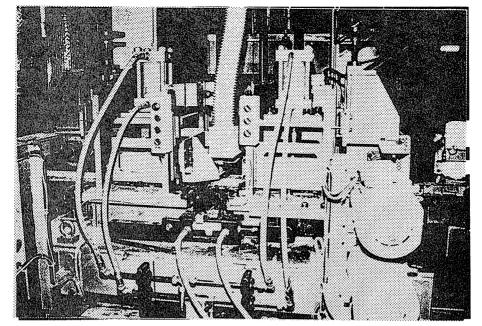




写真-3 グレーディングマシンによるラミナの区分



写真一4 フィンガージョインターによるFJラミナの作成

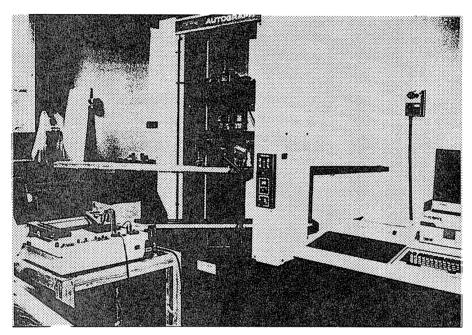



写真-5 FJラミナの曲げ試験

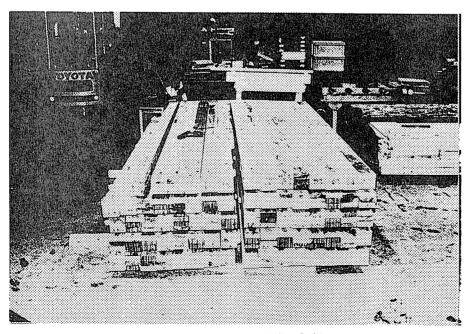



写真-6 製造した3層集成材

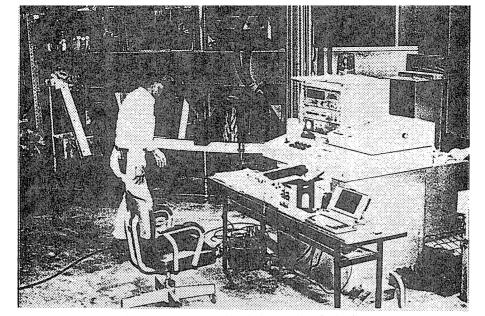



写真-7 3層集成材の曲げ試験

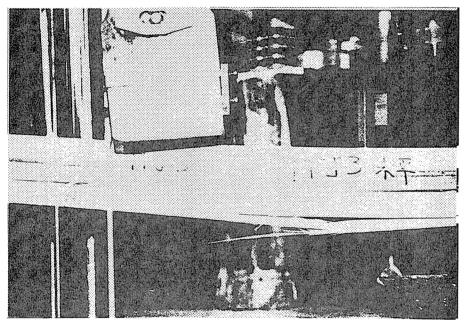



写真-8 3層集成材の破壊形態(水平型)

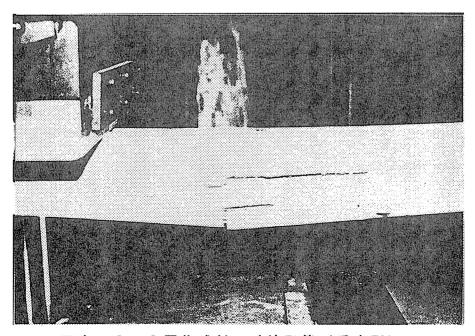



写真-9 3層集成材の破壊形態 (垂直型)

# 2.3 シベリア産カラマッを用いた三層集成材の製造と強度性能 (富山県)

三層集成材の製造およびラミナの性能評価は小池木材株式会社草島工場(富山市)、集成材の強度試験は富山県林業技術センター・木材試験場で実施した。

# 2.3.1. 供試集成材の製作と構成ラミナの曲げヤング係数(以下MOE)測定

供試材にはシベリア産カラマッ230枚を用いた。これらを通常の乾燥スクジュールにより人工乾燥(日本電化工機社製蒸気式乾燥装置)した後、幅12cm、厚さ37mm、長さ3mの寸法の粗ラミナに仕上げた。

つぎに、連続走行式応力等級区分装置(以下SGM 飯田工業社製 MGFE-251)を用い、全ての粗ラミナの平均ヤング係数(以下Eave·m)、最低ヤング係数(以下Elow·m)を測定した。なお、このSGMはラミナの中央120cm区間について材長方向に40箇所のMOEを連続計測し、それらの平均値、最低値を表示する機能を備えている。

Elow·m値が100t/cm²以上の挽材219枚の内、中央180cm区間に腐れが無く、かつ割れが軽 微あるいは無い193枚のラミナを選別し、さらに含水率が14%以上のラミナを除き(含水率の測定は電気抵抗式含水率計を使用し、材長方向に50cm間隔、7箇所でおこなった)、最終的に181枚のラミナを三層集成材の試作に供した。

## 2. 3. 2 5\$\$ 0MOE

図-1に平均ヤング係数(Eave·m)と最低ヤング係数(Elow·m)の関係を示す。供試シベリア産カラマ ツのEave·mは80~240t/cm²の範囲に分布し、平均は158t/cm²、またElow·mの平均値は148t/cm²、Elow·m/Eave·mは0.94であった。

#### 2.3.3 ラミナの含水率

含水率の平均は8.4%、標準偏差は1.75%であり、目標含水率(12±2%)に比べやや小さい。 各ラミナ含水率の変動係数(以下CV)を供試ラミナ(193枚)の平均は約9.3%であった。同様の 測定をベイマツ(n=150)と富山県産スギ(n=152)でおこなった結果、ベイマツの場合±5%、スギの場

合±11%であり、ベイマツの場合の約2倍、スギとほぼ同等のばらつきの程度であった。

# 2. 3. 4 ラミナの縦接合とその曲げ強度性 能

集成材試作用ラミナの内、90枚を無作為に選び、フィンガージョイント(以下FJ)によって表ー1に示す接着条件下で縦接合した。各ラミナのFJ位置は図ー2に示す仕組みを考慮し定めた。その後、作成した縦接合ラミナ(以下FJラミナ)のうち、5枚を抜取り、中央にFJ部が位置し、かつ、材長が120cmとなるよう試験体を仕上げ、曲げ試験(スパン長1m、荷重点間

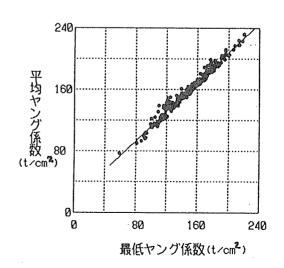



図-1 SGMによる シベ リア産 カラマッラミナ の平均、最低曲げヤング係数

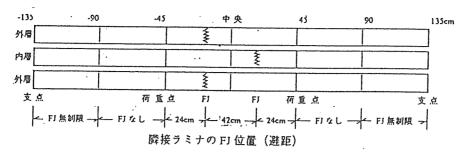



図-2 三層集成材の仕組み

距離34cm)をおこなった。

表-2にFJラミナのMOE、接合前ラミナのMOE、曲げ強度(以下ơm)を示す。

FJラミナのMOEは最大175t/cm²、最小145t/cm²、平均は154t/cm²であった。FJラミナの平均MOEは接合前のラミナの平均Bave・mの95%となり、FJ接合によるMOEの低下は小さいように思われる。

FJラミナのσπは最大602kg/cm²、最小は448kg/cm²、平均は540kg/cm²であった。飯島ら²)がおこなったシバリア産カラマン製材のσm-MOEの回帰直線から試験で得たMOEを基に推定した結果、σπは675kg/cm²となり、製材とラミナでは断面寸法が異なるので厳密ではないが、供試FJラミナの接合効率は8割程度と思われる。FJラミナの破壊形態の大半が木部破断率は小さいもののFJ部近辺の引張破断であり、FJのσm低下への影響が破壊形態の観察からもわかる。

# 2.3.5 供試ラミナの最大集中節径 比

全ての供試ラミナの中央90cm区間(集成材の強度試験時の中央純曲げモーメント区間に相当)の最大集中節径比を測定した。

図-3にその分布を示す。なお、最大集中節径比はランナの目視強度等級区分の主因子であり、また、MOEは機械等級区分の主因子であり、いづれもσmとの相関において意味を持つものであり、図では便宜的にMOEを縦軸とした。

最大集中節径比の最大は50%、平均は 26%であった。今後、シベリア産カラマツラミナの

表-1 縦接合の接着条件(シベリア産カラマツラミナ)

接着剤の種類	レゾルシノール樹脂接着剤 ^{*1}
配合	主剤:硬化剤=1:1
塗 布 量	400∼500 g/m²
養生時間	24時間以上

*1 :大鹿振興社製 DF-1000

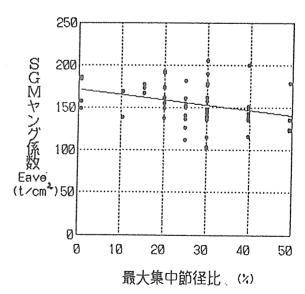



図-3 シベリア産カラマッラミナの最大集中 節径比とヤング係数

表-2 シベリア産カラマツ縦つぎラミナの曲げ強度

No	MOE		接合前ラ	ミナ		$\sigma$ m	σm∕MOE
		平	均	最	低		
		Eaverm	MOE	Elow.m	MOE		
			Eaverm		Elow.m		
	t/cm²	t/cm²		t/cm²		kg/cm²	x0. 001
1	145	164	. 88	156	. 93	448	3. 09
2	175	155	1. 13	147	1. 19	556	3. 18
3	153	183	. 84	182	. 84	602	3. 93
4	148	157	. 94	146	1.01	522	3.53
5	147	162	. 91	150	. 98	570	3.88
Ave.	154		. 94		. 99	540	3.52

曲げ条件: スパン長1m、荷重点間距離34cm ラシナ寸法: 幅 11.5cm 厚さ: 4cm

# 最大集中節径比とσ_□の関係を求めることが必要と思われる。

一連のラミナ処理に要した作業時間に占める最大集中節径比の測定に要した時間の割合はかなり大きく、ラミナの等級区分を目視で行うとすれば測定を工業用カメラを用いるなど省力化、 迅速化することが必要に思われる。

# 2.3.6 ラミナの仕組みと三層集成材の製造

三層集成材を作成するため、FJラミナ70 枚および無接合ラミナ80枚を選び、無作為 に組み合わせた。

表-3に三層集成材の製造条件を示す。 集成材の仕上がり寸法は厚さ30cm、幅 10.5cm、長さ3mとした。3層のいづれの 層もFJラミナを含まない集成材(以下無FJ 構成)10本、内層にFJラミナを配置した集 成材(以下内層FJ構成)20本、全層を FJラミナで構成した集成材(以下全層FJ構 成)20本を作成した。

2.3.7 シベリア産カラマッ三層集成材の強度性能

一般に集成材を用いて構造設計する方法はおおむね2つに分けられると思われる。1つは工場生産された集成材の強度性能に応じて設計側が設計する方法、もう1つは必要な強度性能を設計側が提示

表-3 三層集成材の積層接着条件 (樹種: シバリア産カラママクラミナ)

	•					
接着剤の種類	レゾルシノール樹脂接着剤*1					
配合	主剤:硬化剤=100:40					
塗 布 量	325 g/m²					
開放堆積時間	20分					
圧締方法	油圧					
圧締圧力	10kg/cm²					
圧締時間	9時間					
外気温	6° C					
雰囲気温度	7.4°C					
養生温度	12° C					

*1 :大鹿振興社製 D-300

し、それに応じて工場生産する方法である。三層集成材の用途は一般市場に出荷される柱材が主体と思われることから前者に近い方法となろう。実際に三層集成材を工場で生産する場合、ラミナをなんらかの等級区分法によって区分し、集成材の等級格付けを考慮したラミナのおおよその分類はすることはあるとしても、ラミナの配置までは考慮されないことも多いと思われる。また、今回の正方形断面は必ずしも曲げを受ける平行積層梁として使用しない場合もある。そこで、供試集成材は一定のMOE(100t/cm²)以上のラミナを無作為に配置し、三層集成材を作成し、平行積層梁として負荷を受ける場合(以下H負荷)と垂直積層梁として負荷を受ける場合(以下H負荷)と垂直積層梁として負荷を受ける場合(以下H負荷)と垂直積層梁として負荷を受ける場合(以下H負荷)の2つのケースについて強度性能を測定し、その比較をおこなうとともにFJラミナの配置と強度性能の関係について検討した。また、構成ラミナを無作為に組み合わせた集成材の強度保証を考える場合は確率の問題として扱うことが妥当と思われるので試験結果を統計的に検討した。

## 1) 試験方法

スパン長2.7m、荷重点間距離90cmの3等分点4点荷重方式により曲げ試験を実施した。撓みの測定は供試材の中央部下縁に撓み計を設置し、全撓み量を測定し、MOEを計算した。表 -4に強度試験結果をまとめて示す。

## 2) 曲げヤング係数

集成材30本のMOEは最大209t/cm²、最小126t/cm²、平均値154.2t/cm²、CVは10.9%であった。表からわかるとおりFJラミナの配置および負荷方向の違いが集成材のMOEに及ぼす影響はみられない。その原因として、FJラミナ自体のMOEが接合前に比べ低下が極めて少ないこと、およびラミナを無作為に配置したことにより、MOEが平準化したことによると考えられる。

構成ラミナ130枚のEave·mのCVは17.8%(平均156.5t/cm²)であり、集成後のMOEのCVはラミナの場合の約60%の値に低下している。

確率の考え方から次式により、構成ラミナのCVを基に三層集成材のヤング率のCVを試算すると10.4%となり、試験結果のCVと試算結果はほぼ一致する。

 $(CV) n / (CV) o = (AV) o / (AV) n / n^{o \cdot 6}$ 

ここに、(CV)n : n層集成材のCV (CV)o : 構成ラミナのCV

(AV)n : n層集成材の平均値 (AV)o : 構成ラミナの平均値

n : 積層数

製材のMOEのばらつきとの対比をみると、集成材のMOEのCVは最大が内層FJ構成、H負荷で16.6%、最小は無FJ構成、H負荷で7.5%となり、シベリア産カラマン製材の場合¹゚の18.7%(n=249)に比べ明らかに小さい。

三層集成材のMOEと構成ラミナのEave·mの平均値との比率を各供試集成材で集計した結果、最大は1.07、最小は0.89、平均は0.99であり、平均値レバルではほぼ等しい。

#### 3) 曲げ強度

平均値レベルでσmについてみると、H負荷の場合は、FJラミナを含まない無FJ構成(=652kg/cm²)に比べ内層FJ構成は約20%増加、全層FJ構成は約24%低下、V負荷の場合は無FJ構成

表-4 シベリア産カラマツ3層集成曲げ強度性能、含水率、比重および平均年輪幅

重類*1	負荷 方向		MOE	構成ラミナMOE*³MOE /Eave	σp	σm	σm /MOE	σp/σm	破 壊	MC	比重	平均 年輪幅
			t/cm²	Ave·m Low·m t/cm² t/cm²	kg/cm²	kg/cm²	x. 001	L		%		mm
 CBnon	Н	1	137. 4	147. 0 132. 5 . 93	443. 1	597. 1	4. 35	. 74		13.3	. 604	0. 83
		2	146. 1	140. 0 128. 1 1. 04	384. 8	780. 2	5. 34	. 49		17.5	. 730	. 96
		3	154. 2	157.0 147.6 .98	419.8	668. 2	4. 33	. 63		13.5	. 634	1.51
		4	148. 9	158.6 152.3 .94	373. 2	629.7	4. 23	. 59		11.3	. 608	1. 28
		5	126.8	124. 6 115. 5 1. 02	373. 2	583. 1	4. 60	. 64		12.8	. 587	1. 34
		Ave.	142. 7	. 98		651.7	4. 57	. 618		13.7	. 633	1. 18
	V	1	130.7	147. 2 137. 3 . 89	326. 5	460.6	3. 52	. 71		13.7	. 634	1. 92
		2	148.6	148. 5 136. 9 1. 00	408. 2	598. 3	4. 03	. 68	K	13.6	. 612	1.51
		3	166. 4	174.9 166.2 .95	594.8	734. 7	4. 42	. 81	K	14.5	. 640	1. 39
		4	145.7	162. 9 154. 2 . 89	408. 2	435.0	2. 99	. 94	K	13. 1	. 623	1.76
		5	157.6	155.7 140.0 1.01	396.5	599. 4	3.80	. 66	K	13.4	. 641	2. 15
		Ave.	149.8	. 94		565.6	3. 75	. 760		13.7	. 630	1. 75
CBin	Η	1	167.8	156. 9 149. 7 1. 07	513. 1	741.7	4. 42	. 69	C, K	13.8	. 625	1. 77
		2	140.7	142. 9 130. 5 . 98		810.5	5. 76	. 82	K	14.7	. 582	1. 54
		3	178. 9	169. 1 155. 6 1. 06		810.5	4. 53	. 82	K	13.6	. 628	1. 64
		4	145.5	136. 4 129. 9 1. 07	513. 1	737.0	5. 07	. 70	T	13.5	. 578	2. 18
		5	209. 9	180. 2 173. 7 1. 16		804.7	3. 83	. 93	T	14. 4	. 685	1. 30
		Ave.	168. 6	1. 06		780. 9	4. 72	. 792		14.0	. 620	1. 69
	V	1	158.6	154. 5 146. 9 1. 03		724. 2	4. 57	. 89	T	14. 4	. 643	1. 69
		2	152. 9	156. 0 143. 4 . 98		639. 1	4. 18	. 95	FJ	14.9	. 646	1. 98
		3	134. 2	142.6 136.2 .94		577.3	4. 30	. 75	T	15. 2	. 606	1. 59
		4	144.8	138. 4 131. 7 1. 05		691.5	4. 78	. 49	K, FJ	13.6	. 609	1. 92
		5	163. 3	172. 1 163. 5 . 95		594.8	3.64		K	14. 2	. 653	•
		Ave.	150.8	. 99		645. 4	4. 29	. 784		14.5	. 631	1. 76
CBall	Η	1	134. 9	147. 1 137. 0 . 92		416.3	3.09	. 70	K	14.8	. 647	1. 63
		2	170. 2	171. 3 162. 4 . 99		520. 1	3.06	. 99	FJ ₇₀		. 665	
		3	145.6	146.5 137.5 .99		457. 1	3. 14		$FJ_{90}$		. 585	
		4	168. 3	166. 9 157. 9 1. 01		573.8	3. 41		$FJ_{90}$		. 698	
		5	156.0	148. 6 136. 7 1. 05		513. 1	3. 29	.73	$FJ_{50}$		. 593	
		Ave.	155.0	. 99			3. 20			14. 1		
	V	1	150.6	160.7 150.9 .94		586.6	3. 90		FJ	15. 9		
		2	154. 4	157. 1 144. 4 . 98		541. 1	3. 50	. 82	K	14. 4		
		3		178. 4 168. 4 —		534. 1			FJ	15. 6	.718	
		4	154.0	164.8 155.7 .93			4. 41		FJ	14.3	. 702	
		5	178. 3	177. 7 168. 9 1. 00			3. 07		T, FJ	13.6	. 630	_
		Ave.	159.3	. 96	3 533.6	577.7	3.72	. 908		14.8	. 667	1. 39

曲げ試験条件: スパン長2.7m、荷重点間距離90cm、供試材断面寸法 10.5cmx10.5cm 含水率(MC)および比重は強度試験後、測定

^{*1} 構成 CBnonは3層のいづれの層もFJラミナを含まない集成材、CBinは内層にFJラミナを配置した集成材 CBallは全層をFJラミナで構成した集成材

^{*2} 負荷方向 H:平行積層梁として負荷を受ける場合、V:垂直積層梁として負荷を受ける場合

^{*3} SCMによる測定

σp:曲げ比例限応力 、σm:曲げ強度 、MC測定:全乾法

破壊形態: T 引張り、目切れ, C 圧縮、モメ , K 節 , FJ n フィンガージョイント、n 木破率

(566kg/cm²)に比べCVinは約14%増加、全層FJ構成は約2%増加、また、σpはH負荷の場合、無FJ構成(=399kg/cm²)に比べ、内層FJ構成は約56%増加、全層FJ構成は約2%低下、V負荷では無FJ構成(=427kg/cm²)に比べ内層FJ構成は約18%増加、全層FJ構成は約25%増加した。

FJラミナの配置が強度に与える影響は、H負荷では、最大曲げ応力のかかる引張側外層に配置した場合が最も強度低下への影響が大きく、本試験の場合は全層がFJラミナで構成される全層FJ構成が該当し、内層FJ構成、無FJ構成については強度への影響は小さく、V負荷でも同様に全層FJ構成が引張側外縁にFJが分散的に存在し、内層FJ構成、無FJ構成に比べ、強度低下の影響は大きいものと予測された。しかし、試験の結果ではH負荷、全層FJ構成のσmが明らかに低下したこと以外には予測とは異なる傾向を示した。このことは全層FJ構成の破壊の大半がFJ部に起因するが、他の構成集成材の場合、節あるいは目切れなどFJ部と異なる部分で破壊したことが原因と思われる。

集成材の $\sigma$ mのCVは最大が無FJ構成、V負荷の21.5%、最小は内層FJ構成、H負荷の4.9%となり、 $3^{5}$ Jア産カラマツ製材の場合 $(27.5\%)^{2}$ に比べ明らかに小さい。

また、 $\sigma$  p/ $\sigma$  mの値は、無FJ構成、H負荷では0.62程度であるが、それ以外の条件では0.76以上であり、最大は全層FJ構成、V負荷の0.91を示すように $\sigma$  p/ $\sigma$  mの値が大きい。

#### 2.3.8 まとめ

以上、シベリア産カラマツを用いた三層集成材についての強度試験結果をまとめると、

- 1. フィンガー接合によるラミナの曲げヤング係数の低下は少なく、また、曲げ強度は平均540kg/cm²を示し、製材に比べ、やや低い値と考えられた。
- 2. 三層集成材の曲げヤング係数はFJラミナの配置、荷重方向の相違は認められない。また、構成するラミナのヤング係数の平均値がほぼ集成材のヤング係数に相当するが、その分散は集成化することにより減少した。
- 3. 三層集成材の曲げ強度は全て層をFJラミナで構成する集成材を平行積層梁として負荷した場合を除いて、FJラミナの配置、負荷方向の違いと曲げ強度の関係は明かでない。
- 4. 全体的には供試三層集成材の曲げ強度と既に報告されている製材の曲げ強度とほぼ等しいが、分散は減少したため、下限値は製材の場合に比べ上昇するものと考えられる。

# 文献

1) 飯島泰男,中谷 浩:"実大構造用材の曲げ強度性能(第1報)",木材と技術 No 63 (1985) p1

- 3 3層集成材の製造基準(案)
- 3.1 想定される3層集成材の製造工程

3層集成材の製造基準を検討するにあたり、その製造工程を以下のように想定した。

## (1)原板の製材

原板の挽立寸法は樹種、産地、乾燥技術等により、また歩切れによる廃棄率をい くらに設定するかで変化するので、一概には言えない。長年の経験に拠るところが 大きい。

## (2)原板の乾燥

目標含水率は 12 ± 2% とする。乾燥方法は工場の実情に合わせることになるが、 乾燥品質や生産能率を勘案すれば現状では蒸気式 I F 型乾燥機が無難であろう。

## (3) 欠点の除去

節、腐れ等の欠点を除去する。連続走行式強度等級区分機による原板の区分を想 定しているので、繊維走行の傾斜は考慮しないことにする。

#### (4) 縦接合

構造用フィンガージョイントによって、原板の幅広材面にフィンガー形状が現れるように縦接合を行う。縦接合部分の保証荷重試験を実施をするなら、隣接する挽板の接合位置の分散は考慮しなくてもよいが、そうでない場合は接合部の避距を確保しなければならない。したがって原板の接合時に、それに対する配慮が必要である。

#### (5) 縦接合の保証荷重試験

保証荷重試験とは縦接合部の強度を確認するために設計荷重を実際に負荷し、それに耐えたものだけを使おうという検査方法である。この試験に合格した原板からの挽板は、接合部の避距に関する制限を免除される。

保証荷重試験には専用の試験装置が必要であるが、縦接合工程が工程管理上安定している場合は、この後の工程である連続走行式強度等級区分機での検査で兼用することも考えられる。ただし、この場合にはもう鉋削代に余裕がないために、破壊したものを再度縦接合する事はできない。

もちろん、従来通りの抜取による検査も許されるが、隣接挽板の接合部の避距に 関する制限を受ける。

# (6)連続走行式強度等級区分機による等級区分

挽板の等級区分には、目視区分と機械区分がある。目視区分は従来のように、節 や繊維傾斜の程度によって等級区分するものである。

機械区分はヤング係数によって、等級区分するものである。節や繊維傾斜の影響 は測定されるヤング係数に適切に反映されていると考え、あらためて測定すること はしない。

ここで考えている製造工程では、この機械区分、その中でも連続走行式等級区分機(改正が予定されている構造用集成材の日本農林規格でいうMSR挽板を産出するもの)の使用を想定している。その理由は、MSR挽板を使用しない場合は、節径比の測定が義務付けられているからである。今や国産材挽板では節の存在は避けられず、その節によって等級が低下し、場合によっては30%近くが格外になって使用できなくなる恐れがある。MSR挽板では節径比の測定は行わなくてよいので、節で多量の挽板が使用できなくなることを避けることができる。

# (7)集成接着、仕上げ加工、防腐防蟻処理

以後の工程は、従来の工程と同様である。

# 3.2 3層集成材の製造基準(案)

#### 1 はじめに

構造用集成材には「構造用集成材の日本農林規格」(以下JASと略称)があり、 具備すべき性能等について規定されている。この製造基準でいう3層集成材は、J ASでの「挽板の品質の構成が同一等級構成の集成材」のひとつであり、各種性能 はJASの規定に適合しなければならない。

製造基準は製品集成材の性能がJASの基準に適合できるように、製造技術面からバックアップするもので、JASと製造基準はいわば車の両輪の関係にある。したがって、JASに規定されている事項については、JASを読んでもらうことにして、この製造基準では触れていない。あくまで、製造基準はJASを補完するものである。

# 2 原板の含水率

検査には電気抵抗式または高周波誘電率式含水率計を用い、全数検査又は抜取検査を行う。含水率の適合基準は 8 ~ 15% とする。

# 2.1 全数検査

連続走行式含水率計を用いて全数検査を行い、基準に適合するものを合格とする。 不合格品の内未乾燥のものは再乾燥を、過乾燥のものは調湿を行って、その後再度 全数検査を行う。

# 2.2 抜取検査

検査荷口の数に応じて、表の数を抜取って検査を行う。適合割合が90%以上の場合はその荷口を合格とし、70%未満の場合はその荷口は不合格とする。70%以上90%未満の場合は改めて表の2倍の数を抜取って検査を行い、適合割合が90%以上の場合はその荷口を合格とし、90%未満の場合はその荷口は不合格とする。

荷口	の数	試料の数					
	90以上	5					
91以上	280以上	8					
281以上	500以上	13					
501以上	501以上 1200未満						
1201	以上	32					

# 3 欠点の除去

#### 3.1 節

材縁部の節に注目した場合は節径比33%以上、材縁・中央に関係なくみた場合は集中節径比40%以上の節は除去する。

3.2 腐れ、割れ、変色及び逆目

限度見本による。

限度見本は別に定める。

## 4 縦接合

所要長さに満たない原板はフィンガージョイント等によって縦接合を行う。 フィンガージョイントは「構造用大断面集成材の製造基準:社団法人日本木材加工 技術協会(以下、現行製造基準と略称)の別記1構造用大断面集成材用ラミナのフィンガージョイントの技術基準」による。

# 5 縦接合部分の保証荷重試験

縦接合部分に荷重を負荷して、接合の保証荷重試験を行う。この試験で破壊した 接合部は前工程に戻って再度接合する。

接合の性能が安定している場合は、本工程を省略して、第7項のSGMによる等級区分工程で保証荷重試験を同時に実施することが許される。ただし、SGMによって縦接合が破壊した場合は、当該原板の厚さに余裕がないために再度縦接合することは許されない。

#### 6 粗飽削

所要の挽板厚さより 1mm 厚い寸法に粗鉋削する。

この工程は次のSGM検査のためであるが、削残しが生じていて厚さが薄くなっている原板はヤング係数が低いと評価される。これは製造者の損失となる。削残しが生じないように原板を厚目にすることによる歩留りの低下と、下位等級に評価される損失とのバランスを考慮する事が重要である。

この粗鉋削は (次工程の S G M 検査のために) 原板の厚さを規制することが目的であるので、鉋削面の品質は問わない。

# 7 SGMによる挽板の等級区分

SGM (JASで称するMSR挽板を産出する型式のもの)によって原板の等級区分を行う。等級については、JASに従う。なお、等級区分が終了した段階から

原板は挽板と呼ばれる。

# 8 挽板の品質構成

JASに従う。

# 9 挽板側面の機械加工

- 9.1 側面加工は丸鋸による鋸断又は鉋削で行うが、接着幅矧ぎを行う場合は鉋削を 原則とする。
- 9.2 加工後の曲がりは、3m 当り 5mm 以下とする。

# 10 積層接着面の鉋削

- 10.1 積層接着面の鉋削は、接着前24時間以内に行う。鋭利な刃物を用い、送材ローラ等の押え力による被接着面のつぶれや破損がないようにし、加工上の欠点、特に削りの波打ちや材端部のしゃくれがないようにする。ナイフマークの幅は2mm以下とする。
- 10.2 1枚の挽板各部の厚さのばらつきは「目標寸法 ± 0.2mm 」以内とする。鉋 削加工で割れ等の加工上の欠点が発生しなかった場合の、幅反り、反り、ねじれは 許容する。

## 11 積層接着

11.1 接着剤の品質

接着剤の種類はJASの規定に従うが、初期試験(7.2.5、7.2.6、7.2.7及び7.2.9)及び抜取試験(7.4.3、7.4.4及び7.4.5)に適合する品質のものを使用する。

初期試験、抜取試験は現行製造基準の規定による。

11.2 被接着面の汚れ

接着時の被接着面は、油やほこり等による汚れがあってはならない。

11.3 接着剤の調整(製糊)

接着剤の各成分は接着剤製造者の仕様に基づき正確に配合する。ミキサーや容器 具類は常に清浄を保ち、種類の異なる接着剤を用いる場合には装置や容器具類を別 にするか、又は十分に洗浄処理した後に使用しなければならない。配合した接着剤 は均等な接着剤液となるまで十分に攪拌する。

11.4 接着剤の塗布

接着剤は接着剤製造者の仕様に基づき可使時間以内に、被接着面に適正量を塗布するものとする。

11.5 接着時の堆積時間

堆積時間は接着剤製造者の仕様に示された時間を超えてはならない。

- 11.6 接着時の圧締
  - 11.6.1 圧締具

圧締にはプレス又はクランプを用いることとし、釘等による圧締は行わない。

11.6.2 プレスによる圧締

積層堆積された挽板はプレスによって圧締する。圧締されたブロックは I ビーム、 当板及びターンバックル等のクランプを用い圧締圧力を保持し、プレスから取出し て接着剤の硬化を行う。 I ビーム、当板及びターンバックル等のクランプは、十分 な強さと剛性を持つ材質及び寸法を有するものとし、クランプ間隔はできるだけ狭 くする。

11.6.3 クランプによる圧締

堆積積層された挽板はクランプによって圧締する。圧締のためのボルト、ナットは常に油をひき、ネジ山のつぶれ等が発生しないように管理には十分な注意を払い、ネジの回転トルクと圧締力の関係をチェックしなければならない。

圧締治具は十分な強さと剛性をもつものとする。挽板の繊維を破壊することなく接着層に均等に圧力を分散させるため、クランプには圧締ブロックと当板を用い、当板には強度が大きく、かつ、高比重の広葉樹材を用いる。クランプ間隔は集成材の幅、クランプの寸法、容量及び1セット当りのクランプ数等によって変動するが、原則として、圧締ブロック、当板及び最外層挽板の各厚さの合計の2倍を超えないようにする。クランプ締めは原則として、集成材の1端から他端に向かって、あるいは中央部から両端に向かって順次圧締する。

11.7 接着時の圧締圧力

挽板を相互に密着させ、均等な厚さの接着層を形成させるために、適正な圧締圧力を加える。圧締圧力は、針葉樹の場合は 5 ~ 10kg/cm²、広葉樹の場合は10 ~ 15kg/cm² を標準とし、挽板の樹種や接着剤の種類によって増減を行う。

11.8 接着時の硬化温度、圧締時間及び養生期間

接着剤が十分硬化するまで、適正な温度と湿度で圧締圧力を維持する。一般に、接着剤には常温硬化性又は中温硬化性のものを用いるが、常温で硬化する接着剤に中温を加えて圧締時間を短縮させる場合は、接着剤製造者の仕様又は十分な根拠に基づいて、硬化温度及び圧締時間を決めなければならない。

圧締圧力を解除した後は十分な養生期間を置いて、次の加工にとり掛かる。

#### 12 仕上げ加工

- 12.1 集成材の表面仕上げは、鉋盤又は重研削サンダーを用いて行う。断面の直角度は、直角との最大ひずみが 1/100 以下とする。
- 12.2 挽板の材縁部に予知できない欠点が現れた場合は、埋木を挿入接着して補修

してもよい。埋木に用いる材料は挽板と同一樹種とし、無欠点で繊維が通直なものであって、かつ、比重が概ね等しいものとする。形状等は現行製造基準の規定による。なお、埋木の製造、加工及び接着は第11及び12項の規定に適合しなければならない。

# 13 防腐防蟻処理

必要がある場合は、集成材に加圧法、浸漬法、塗布法、吹付法等によって防腐防 蟻処理を行うことができる。防腐防蟻処理方法は現行製造基準の別記3「甲種構造 用大断面集成材の防腐防蟻処理の技術基準」による。

#### 4 接着力性能試験

接着性能試験は、強度性能試験の終了した試験体の健全部を利用して実施するために、 実施は来年度に行わざるを得ない。以下、試験の概要について述べる。

## 4.1 供試接着剤の接着性能

供試集成材の接着に使用された接着剤の基本的な性能をチェックするためにJISの ブロックせん断試験法に準じて接着試験を行う。

供試樹種はカバ及びスギ、ヒノキ材とし、接着は標準的な条件で行う。

試験は①常態及び②繰返し煮沸処理③ V P S D 処理を施したものについて行う。処理の詳細は以下の通りである。

- ①常態
- ②繰り返し煮沸処理
- ③ V P S D 処理

## 4.2 作成試験体の接着性能

集成材の接着性強さ試験としてはJAS、あるいは前述したJISのブロックせん断試験やASTMのステップ型ブロックせん断試験があるが、今回の供試体にはラミナの厚さ・構成からそのまま適用するのが困難と思われるので、以下に述べるような方法を採用することとした。

#### (1)試験片

曲げ試験終了後及び長期載荷試験終了後の試験体健全部より、断面はそのままに軸方向5cmのブロック状試験片を裁断する。試験片数は最低30片とし、接着強さ試験と剥離試験に供する。

105×105×50mm 30片

試験片の採材位置は記録する。

#### (2)接着強さ試験

図示したようなBS 5305: Part C15に準拠した方法によってせん断試験を行う。 試験片数は、1条件当たり最低5個とする。

中心層のラミナに載荷する。

処理の詳細は以下の通りである。

- ①常態
- ②繰返し煮沸処理

煮沸 4hr→乾燥 60°C, 20hr→煮沸 4hr→室温水冷却 1hr

③ V P S D 処理

10~25°C室温水浸せき→減圧635mmHg,5min→加圧5.2±0.3kgf/cm,1hrの2回繰り返し 3 ) 副難試験

上述の試験片について①繰り返し煮沸剥離試験、②VPSD剥離試験を行う。試験片数は1条件5片とする。

処理の詳細は以下の通りである。

①繰返し煮沸処理

煮沸 4hr→乾燥 70°C,20hrを1サイクルとし、1、2、3回繰り返し

# ②VPSD処理

 $10\sim25^{\circ}$  C室温水浸せき→減圧635mmHg,5min→加圧 $5.2\pm0.3$ kgf/cm,1hrの2回繰り返し→乾燥 $70^{\circ}$  C,20hrを1 サイクルとし、1、2、3 回繰り返し

# 4. 3 試験結果

来年度(平成7年度)報告する。

# 5 おわりに

3層集成材の製造試験と初期曲げ強度試験を実施した。

対象樹種としてカラマツ、スギ、シベリアカラマツを取り上げ、各工場での標準的な製造工程・製造条件によって供試集成材を製作した。

製造後、比較的時間が経過していない時点での曲げ試験では、いずれの樹種についても ほぼ満足すべき性能が得られた。改正後の構造用集成材の日本農林規格に規定される予定 の性能値を、一部の例外を除いてクリアしているが、詳細については来年度に報告する。

製造基準 (案) については叩き台を提示した。案を検討するに当たって製造工程の今後の方向を想定したが、案と共に、この点についても日本集成材工業協同組合での検討をお願いしたい。